Loading…
MS-RMAC: Multiscale Regional Maximum Activation of Convolutions for Image Retrieval
Recent works have demonstrated that image descriptors produced by convolutional feature maps provide state-of-the-art performance for image retrieval and classification problems. However, features from a single convolutional layer are not robust enough for shape deformation, scale variation, and hea...
Saved in:
Published in: | IEEE signal processing letters 2017-05, Vol.24 (5), p.609-613 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent works have demonstrated that image descriptors produced by convolutional feature maps provide state-of-the-art performance for image retrieval and classification problems. However, features from a single convolutional layer are not robust enough for shape deformation, scale variation, and heavy occlusion. In this letter, we present a simple and straightforward approach for extracting multiscale (MS) regional maximum activation of convolutions features from different layers of the convolutional neural network. And we also propose aggregating MS features into a single vector by a parameter-free hedge method for image retrieval. Extensive experimental results on three challenging benchmark datasets indicate that the proposed method achieved outstanding performance against state-of-the-art methods. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2017.2665522 |