Loading…

High-Fidelity Model Order Reduction for Microgrids Stability Assessment

Proper modeling of inverter-based microgrids is crucial for accurate assessment of stability boundaries. It has been recently realized that the stability conditions for such microgrids are significantly different from those known for large-scale power systems. In particular, the network dynamics, de...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2018-01, Vol.33 (1), p.874-887
Main Authors: Vorobev, Petr, Po-Hsu Huang, Al Hosani, Mohamed, Kirtley, James L., Turitsyn, Konstantin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proper modeling of inverter-based microgrids is crucial for accurate assessment of stability boundaries. It has been recently realized that the stability conditions for such microgrids are significantly different from those known for large-scale power systems. In particular, the network dynamics, despite its fast nature, appears to have major influence on stability of slower modes. While detailed models are available, they are both computationally expensive and not transparent enough to provide an insight into the instability mechanisms and factors. In this paper, a computationally efficient and accurate reduced-order model is proposed for modeling inverter-based microgrids. The developed model has a structure similar to quasi-stationary model and at the same time properly accounts for the effects of network dynamics. The main factors affecting microgrid stability are analyzed using the developed reduced-order model and shown to be unique for microgrids, having no direct analogy in large-scale power systems. Particularly, it has been discovered that the stability limits for the conventional droop-based system are determined by the ratio of inverter rating to network capacity, leading to a smaller stability region for microgrids with shorter lines. Finally, the results are verified with different models based on both frequency and time domain analyses.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2017.2707400