Loading…

Light Field Image Coding Using High-Order Intrablock Prediction

This paper proposes a two-stage high-order intrablock prediction method for light field image coding. This method exploits the spatial redundancy in lenslet light field images by predicting each image block, through a geometric transformation applied to a region of the causal encoded area. Light fie...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in signal processing 2017-10, Vol.11 (7), p.1120-1131
Main Authors: Monteiro, Ricardo J. S., Nunes, Paulo J. L., Rodrigues, Nuno M. M., Faria, Sergio M. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a two-stage high-order intrablock prediction method for light field image coding. This method exploits the spatial redundancy in lenslet light field images by predicting each image block, through a geometric transformation applied to a region of the causal encoded area. Light field images comprise an array of microimages that are related by complex geometric transformations that cannot be efficiently compensated by state-of-the-art image coding techniques, which are usually based on low-order translational prediction models. The two-stage nature of the proposed method allows us to choose the order of the prediction model most suitable for each block, ranging from pure translations to projective or bilinear transformations, optimized according to an appropriate rate-distortion criterion. The proposed higher order intrablock prediction approach was integrated into a high efficiency video coding (HEVC) codec and evaluated for both unfocused and focused light field camera models, using different resolutions and microlens arrays. Experimental results show consistent bitrate savings, which can go up to 12.62%, when compared to a lower order intrablock prediction solution and 49.82% when compared to HEVC still picture coding.
ISSN:1932-4553
1941-0484
DOI:10.1109/JSTSP.2017.2721358