Loading…

Novel Audio Feature Projection Using KDLPCCA-Based Correlation with EEG Features for Favorite Music Classification

A novel audio feature projection using Kernel Discriminative Locality Preserving Canonical Correlation Analysis (KDLPCCA)-based correlation with electroencephalogram (EEG) features for favorite music classification is presented in this paper. The projected audio features reflect individual music pre...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on affective computing 2019-07, Vol.10 (3), p.430-444
Main Authors: Sawata, Ryosuke, Ogawa, Takahiro, Haseyama, Miki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel audio feature projection using Kernel Discriminative Locality Preserving Canonical Correlation Analysis (KDLPCCA)-based correlation with electroencephalogram (EEG) features for favorite music classification is presented in this paper. The projected audio features reflect individual music preference adaptively since they are calculated by considering correlations with the user's EEG signals during listening to musical pieces that the user likes/dislikes via a novel CCA proposed in this paper. The novel CCA, called KDLPCCA, can consider not only a non-linear correlation but also local properties and discriminative information of each class sample, namely, music likes/dislikes. Specifically, local properties reflect intrinsic data structures of the original audio features, and discriminative information enhances the power of the final classification. Hence, the projected audio features have an optimal correlation with individual music preference reflected in the user's EEG signals, adaptively. If the KDLPCCA-based projection that can transform original audio features into novel audio features is calculated once, our method can extract projected audio features from a new musical piece without newly observing individual EEG signals. Our method therefore has a high level of practicability. Consequently, effective classification of user's favorite musical pieces via a Support Vector Machine (SVM) classifier using the new projected audio features becomes feasible. Experimental results show that our method for favorite music classification using projected audio features via the novel CCA outperforms methods using original audio features, EEG features and even audio features projected by other state-of-the-art CCAs.
ISSN:1949-3045
1949-3045
DOI:10.1109/TAFFC.2017.2729540