Loading…

Accurate and Efficient Stochastic Computing Hardware for Convolutional Neural Networks

This paper presents an efficient unipolar stochastic computing hardware for convolutional neural networks (CNNs). It includes stochastic ReLU and optimized max function, which are key components in a CNN. To avoid the range limitation problem of stochastic numbers and increase the signal-to-noise ra...

Full description

Saved in:
Bibliographic Details
Main Authors: Joonsang Yu, Kyounghoon Kim, Jongeun Lee, Kiyoung Choi
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an efficient unipolar stochastic computing hardware for convolutional neural networks (CNNs). It includes stochastic ReLU and optimized max function, which are key components in a CNN. To avoid the range limitation problem of stochastic numbers and increase the signal-to-noise ratio, we perform weight normalization and upscaling. In addition, to reduce the overhead of binary-to-stochastic conversion, we propose a scheme for sharing stochastic number generators among the neurons in a CNN. Experimental results show that our approach outperforms the previous ones based on stochastic computing in terms of accuracy, area, and energy consumption.
ISSN:1063-6404
2576-6996
DOI:10.1109/ICCD.2017.24