Loading…
Accurate and Efficient Stochastic Computing Hardware for Convolutional Neural Networks
This paper presents an efficient unipolar stochastic computing hardware for convolutional neural networks (CNNs). It includes stochastic ReLU and optimized max function, which are key components in a CNN. To avoid the range limitation problem of stochastic numbers and increase the signal-to-noise ra...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an efficient unipolar stochastic computing hardware for convolutional neural networks (CNNs). It includes stochastic ReLU and optimized max function, which are key components in a CNN. To avoid the range limitation problem of stochastic numbers and increase the signal-to-noise ratio, we perform weight normalization and upscaling. In addition, to reduce the overhead of binary-to-stochastic conversion, we propose a scheme for sharing stochastic number generators among the neurons in a CNN. Experimental results show that our approach outperforms the previous ones based on stochastic computing in terms of accuracy, area, and energy consumption. |
---|---|
ISSN: | 1063-6404 2576-6996 |
DOI: | 10.1109/ICCD.2017.24 |