Loading…
Cooperative Jamming for Physical Layer Security Enhancement in Internet of Things
Internet of Things (IoT) is becoming an emerging paradigm to achieve ubiquitous connectivity, via massive deployment of physical objects, such as sensors, controllers, and actuators. However, concerns on the IoT security are raised due to the wireless broadcasting nature and the energy constraint of...
Saved in:
Published in: | IEEE internet of things journal 2018-02, Vol.5 (1), p.219-228 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Internet of Things (IoT) is becoming an emerging paradigm to achieve ubiquitous connectivity, via massive deployment of physical objects, such as sensors, controllers, and actuators. However, concerns on the IoT security are raised due to the wireless broadcasting nature and the energy constraint of the physical objects. In this paper, we study secure downlink transmission from a controller to an actuator, with the help of a cooperative jammer to fight against multiple passive and noncolluding eavesdroppers. In addition to artificial noise aided secrecy beamforming for secure transmission, cooperative jamming (CJ) is explored to further enhance physical layer security. In particular, we provide a secrecy enhancing transmit design to minimize the secrecy outage probability (SOP), subject to a minimum requirement on the secrecy rate. Based on a strict mathematical analysis, we further characterize the impacts of the main channel quality and the minimum secrecy rate on transmit designs. Numerical results confirm that our design can enhance both security (in terms of SOP) and power efficiency as compared with the approach without CJ. |
---|---|
ISSN: | 2327-4662 2327-4662 |
DOI: | 10.1109/JIOT.2017.2778185 |