Loading…
Adaptive RNN Tree for Large-Scale Human Action Recognition
In this work, we present the RNN Tree (RNN-T), an adaptive learning framework for skeleton based human action recognition. Our method categorizes action classes and uses multiple Recurrent Neural Networks (RNNs) in a treelike hierarchy. The RNNs in RNN-T are co-trained with the action category hiera...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we present the RNN Tree (RNN-T), an adaptive learning framework for skeleton based human action recognition. Our method categorizes action classes and uses multiple Recurrent Neural Networks (RNNs) in a treelike hierarchy. The RNNs in RNN-T are co-trained with the action category hierarchy, which determines the structure of RNN-T. Actions in skeletal representations are recognized via a hierarchical inference process, during which individual RNNs differentiate finer-grained action classes with increasing confidence. Inference in RNN-T ends when any RNN in the tree recognizes the action with high confidence, or a leaf node is reached. RNN-T effectively addresses two main challenges of large-scale action recognition: (i) able to distinguish fine-grained action classes that are intractable using a single network, and (ii) adaptive to new action classes by augmenting an existing model. We demonstrate the effectiveness of RNN-T/ACH method and compare it with the state-of-the-art methods on a large-scale dataset and several existing benchmarks. |
---|---|
ISSN: | 2380-7504 |
DOI: | 10.1109/ICCV.2017.161 |