Loading…

Adaptive RNN Tree for Large-Scale Human Action Recognition

In this work, we present the RNN Tree (RNN-T), an adaptive learning framework for skeleton based human action recognition. Our method categorizes action classes and uses multiple Recurrent Neural Networks (RNNs) in a treelike hierarchy. The RNNs in RNN-T are co-trained with the action category hiera...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenbo Li, Longyin Wen, Ming-Ching Chang, Ser Nam Lim, Siwei Lyu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we present the RNN Tree (RNN-T), an adaptive learning framework for skeleton based human action recognition. Our method categorizes action classes and uses multiple Recurrent Neural Networks (RNNs) in a treelike hierarchy. The RNNs in RNN-T are co-trained with the action category hierarchy, which determines the structure of RNN-T. Actions in skeletal representations are recognized via a hierarchical inference process, during which individual RNNs differentiate finer-grained action classes with increasing confidence. Inference in RNN-T ends when any RNN in the tree recognizes the action with high confidence, or a leaf node is reached. RNN-T effectively addresses two main challenges of large-scale action recognition: (i) able to distinguish fine-grained action classes that are intractable using a single network, and (ii) adaptive to new action classes by augmenting an existing model. We demonstrate the effectiveness of RNN-T/ACH method and compare it with the state-of-the-art methods on a large-scale dataset and several existing benchmarks.
ISSN:2380-7504
DOI:10.1109/ICCV.2017.161