Loading…
Computer-Automated Malaria Diagnosis and Quantitation Using Convolutional Neural Networks
The optical microscope remains a widely-used tool for diagnosis and quantitation of malaria. An automated system that can match the performance of well-trained technicians is motivated by a shortage of trained microscopists. We have developed a computer vision system that leverages deep learning to...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The optical microscope remains a widely-used tool for diagnosis and quantitation of malaria. An automated system that can match the performance of well-trained technicians is motivated by a shortage of trained microscopists. We have developed a computer vision system that leverages deep learning to identify malaria parasites in micrographs of standard, field-prepared thick blood films. The prototype application diagnoses P. falciparum with sufficient accuracy to achieve competency level 1 in the World Health Organization external competency assessment, and quantitates with sufficient accuracy for use in drug resistance studies. A suite of new computer vision techniques-global white balance, adaptive nonlinear grayscale, and a novel augmentation scheme-underpin the system's state-of-the-art performance. We outline a rich, global training set; describe the algorithm in detail; argue for patient-level performance metrics for the evaluation of automated diagnosis methods; and provide results for P. falciparum. |
---|---|
ISSN: | 2473-9944 |
DOI: | 10.1109/ICCVW.2017.22 |