Loading…
Pulse oximetry: an improved in vitro model that reduces blood flow-related artifacts
Artifacts may occur in many in vitro models of pulse oximetry due to the optical effects of synchronously oriented and/or deformed erythrocytes. Although these artifacts are most likely negligible in living superficial tissues, they are demonstrated to have considerable influence on the calibration...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2000-03, Vol.47 (3), p.338-343 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Artifacts may occur in many in vitro models of pulse oximetry due to the optical effects of synchronously oriented and/or deformed erythrocytes. Although these artifacts are most likely negligible in living superficial tissues, they are demonstrated to have considerable influence on the calibration curve obtainable from the in vitro simulation of pulse oximetry in such models, especially at low oxygen saturations. Therefore, the authors have developed a modified in vitro model which reduces the effect of these artifacts. This is achieved by excluding data obtained during pressure transients and by raising the blood flow velocity. As a result, the model more closely approximates in vivo pulse oximetry, particularly under clinically important conditions of low blood oxygen saturation levels. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/10.827294 |