Loading…
Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM
Recently, approaches based on fully convolutional networks (FCN) have achieved state-of-the-art performance in the semantic segmentation of very high resolution (VHR) remotely sensed images. One central issue in this method is the loss of detailed information due to downsampling operations in FCN. T...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2018-03, Vol.15 (3), p.474-478 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, approaches based on fully convolutional networks (FCN) have achieved state-of-the-art performance in the semantic segmentation of very high resolution (VHR) remotely sensed images. One central issue in this method is the loss of detailed information due to downsampling operations in FCN. To solve this problem, we introduce the maximum fusion strategy that effectively combines semantic information from deep layers and detailed information from shallow layers. Furthermore, this letter develops a powerful backend to enhance the result of FCN by leveraging the digital surface model, which provides height information for VHR images. The proposed semantic segmentation scheme has achieved an overall accuracy of 90.6% on the ISPRS Vaihingen benchmark. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2018.2795531 |