Loading…
Aggregation of Rich Depth-Aware Features in a Modified Stacked Generalization Model for Single Image Depth Estimation
Estimating scene depth from a single monocular image is a crucial component in computer vision tasks, enabling many further applications such as robot vision, 3-D modeling, and above all, 2-D to 3-D image/video conversion. Since there are an infinite number of possible world scenes, that can produce...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2019-03, Vol.29 (3), p.683-697 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Estimating scene depth from a single monocular image is a crucial component in computer vision tasks, enabling many further applications such as robot vision, 3-D modeling, and above all, 2-D to 3-D image/video conversion. Since there are an infinite number of possible world scenes, that can produce a unique image, single image depth estimation is a highly challenging task. This paper tackles such an ambiguous problem by using the merits of both global and local information (structures) of a scene. To this end, we formulate single image depth estimation as a regression problem via (on) rich depth related features which describe effective monocular cues. Exploiting the relationship between these image features and depth values is adopted via a learning model which is inspired by modified stacked generalization scheme. The experiments demonstrate competitive results compared with existing data-driven approaches in both quantitative and qualitative analysis with a remarkably simpler approach than previous works. |
---|---|
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2018.2808682 |