Loading…
QUEST: A 7.49TOPS multi-purpose log-quantized DNN inference engine stacked on 96MB 3D SRAM using inductive-coupling technology in 40nm CMOS
A key consideration for deep neural network (DNN) inference accelerators is the need for large and high-bandwidth external memories. Although an architectural concept for stacking a DNN accelerator with DRAMs has been proposed previously, long DRAM latency remains problematic and limits the performa...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A key consideration for deep neural network (DNN) inference accelerators is the need for large and high-bandwidth external memories. Although an architectural concept for stacking a DNN accelerator with DRAMs has been proposed previously, long DRAM latency remains problematic and limits the performance [1]. Recent algorithm-level optimizations, such as network pruning and compression, have shown success in reducing the DNN memory size [2]; however, since networks become irregular and sparse, they induce an additional need for agile random accesses to the memory systems. |
---|---|
ISSN: | 2376-8606 |
DOI: | 10.1109/ISSCC.2018.8310261 |