Loading…
Deep reinforcement learning for semiconductor production scheduling
Despite producing tremendous success stories by identifying cat videos [1] or solving computer as well as board games [2], [3], the adoption of deep learning in the semiconductor industry is moderatre. In this paper, we apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcem...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite producing tremendous success stories by identifying cat videos [1] or solving computer as well as board games [2], [3], the adoption of deep learning in the semiconductor industry is moderatre. In this paper, we apply Google DeepMind's Deep Q Network (DQN) agent algorithm for Reinforcement Learning (RL) to semiconductor production scheduling. In an RL environment several cooperative DQN agents, which utilize deep neural networks, are trained with flexible user-defined objectives. We show benchmarks comparing standard dispatching heuristics with the DQN agents in an abstract frontend-of-line semiconducÂtor production facility. Results are promising and show that DQN agents optimize production autonomously for different targets. |
---|---|
ISSN: | 2376-6697 |
DOI: | 10.1109/ASMC.2018.8373191 |