Loading…
Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication
Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning networ...
Saved in:
Published in: | IEEE signal processing letters 2018-07, Vol.25 (7), p.1109-1113 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653 |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653 |
container_end_page | 1113 |
container_issue | 7 |
container_start_page | 1109 |
container_title | IEEE signal processing letters |
container_volume | 25 |
creator | Chang, Inho Low, Cheng-Yaw Choi, Seokmin Teoh, Andrew Beng-Jin |
description | Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning network that performs feature extraction and classification, collectively dubbed Kernel Deep Regression Network (KDRN). The KDRN is built on multiple kernel ridge regressions (KRR) hierarchically, where each is trained analytically and independently. In principal, KDRN does not mean to learn directly from the raw touch-stroke data like other deep learning models, but it relearns from the pre-extracted features to yield a richer and a relatively more discriminative feature set. Subsequent to that, the authentication is carried out by KRR. Overall, KDRN achieves an equal error rate of 0.013% for intrasession authentication, 0.023% for intersession authentication, and 0.121% for interweek authentication on the Touchlaytics dataset. |
doi_str_mv | 10.1109/LSP.2018.2846050 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8378259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8378259</ieee_id><sourcerecordid>10_1109_LSP_2018_2846050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653</originalsourceid><addsrcrecordid>eNo9kEFPwkAQhTdGExG9m3jZP9A62-10d48EFI2NGsFzs12mUoGW7JYQ_r0lEE_zDvO9vHyM3QuIhQDzmM8-4wSEjhOdZoBwwQYCUUeJzMRln0FBZAzoa3YTwi8AaKFxwKZv5Bta8wnRln_Rj6cQ6rbh79TtW7_iVev5vN25ZTTrfLsiPjk0dlO7wEe7bklNVzvb9cAtu6rsOtDd-Q7Z9_PTfPwS5R_T1_Eoj1ySyS5KUaFG0iYB6lcDOJ2hVsICSVsqqowiypAIlUyFXajUKVOmJSEtrMlQDhmcep1vQ_BUFVtfb6w_FAKKo4iiF1EcRRRnET3ycEJqIvp_11LpBI38A26sWcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chang, Inho ; Low, Cheng-Yaw ; Choi, Seokmin ; Teoh, Andrew Beng-Jin</creator><creatorcontrib>Chang, Inho ; Low, Cheng-Yaw ; Choi, Seokmin ; Teoh, Andrew Beng-Jin</creatorcontrib><description>Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning network that performs feature extraction and classification, collectively dubbed Kernel Deep Regression Network (KDRN). The KDRN is built on multiple kernel ridge regressions (KRR) hierarchically, where each is trained analytically and independently. In principal, KDRN does not mean to learn directly from the raw touch-stroke data like other deep learning models, but it relearns from the pre-extracted features to yield a richer and a relatively more discriminative feature set. Subsequent to that, the authentication is carried out by KRR. Overall, KDRN achieves an equal error rate of 0.013% for intrasession authentication, 0.023% for intersession authentication, and 0.121% for interweek authentication on the Touchlaytics dataset.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2018.2846050</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Authentication ; biometrics ; Biometrics (access control) ; Feature extraction ; Hidden Markov models ; Kernel ; Machine learning ; stacking-based deep neural network ; touch-stroke dynamics ; Training</subject><ispartof>IEEE signal processing letters, 2018-07, Vol.25 (7), p.1109-1113</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653</citedby><cites>FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653</cites><orcidid>0000-0002-6764-0614 ; 0000-0001-5063-9484 ; 0000-0002-9435-2052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8378259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chang, Inho</creatorcontrib><creatorcontrib>Low, Cheng-Yaw</creatorcontrib><creatorcontrib>Choi, Seokmin</creatorcontrib><creatorcontrib>Teoh, Andrew Beng-Jin</creatorcontrib><title>Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning network that performs feature extraction and classification, collectively dubbed Kernel Deep Regression Network (KDRN). The KDRN is built on multiple kernel ridge regressions (KRR) hierarchically, where each is trained analytically and independently. In principal, KDRN does not mean to learn directly from the raw touch-stroke data like other deep learning models, but it relearns from the pre-extracted features to yield a richer and a relatively more discriminative feature set. Subsequent to that, the authentication is carried out by KRR. Overall, KDRN achieves an equal error rate of 0.013% for intrasession authentication, 0.023% for intersession authentication, and 0.121% for interweek authentication on the Touchlaytics dataset.</description><subject>Authentication</subject><subject>biometrics</subject><subject>Biometrics (access control)</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>stacking-based deep neural network</subject><subject>touch-stroke dynamics</subject><subject>Training</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwkAQhTdGExG9m3jZP9A62-10d48EFI2NGsFzs12mUoGW7JYQ_r0lEE_zDvO9vHyM3QuIhQDzmM8-4wSEjhOdZoBwwQYCUUeJzMRln0FBZAzoa3YTwi8AaKFxwKZv5Bta8wnRln_Rj6cQ6rbh79TtW7_iVev5vN25ZTTrfLsiPjk0dlO7wEe7bklNVzvb9cAtu6rsOtDd-Q7Z9_PTfPwS5R_T1_Eoj1ySyS5KUaFG0iYB6lcDOJ2hVsICSVsqqowiypAIlUyFXajUKVOmJSEtrMlQDhmcep1vQ_BUFVtfb6w_FAKKo4iiF1EcRRRnET3ycEJqIvp_11LpBI38A26sWcc</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Chang, Inho</creator><creator>Low, Cheng-Yaw</creator><creator>Choi, Seokmin</creator><creator>Teoh, Andrew Beng-Jin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6764-0614</orcidid><orcidid>https://orcid.org/0000-0001-5063-9484</orcidid><orcidid>https://orcid.org/0000-0002-9435-2052</orcidid></search><sort><creationdate>201807</creationdate><title>Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication</title><author>Chang, Inho ; Low, Cheng-Yaw ; Choi, Seokmin ; Teoh, Andrew Beng-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Authentication</topic><topic>biometrics</topic><topic>Biometrics (access control)</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>stacking-based deep neural network</topic><topic>touch-stroke dynamics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Inho</creatorcontrib><creatorcontrib>Low, Cheng-Yaw</creatorcontrib><creatorcontrib>Choi, Seokmin</creatorcontrib><creatorcontrib>Teoh, Andrew Beng-Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Inho</au><au>Low, Cheng-Yaw</au><au>Choi, Seokmin</au><au>Teoh, Andrew Beng-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2018-07</date><risdate>2018</risdate><volume>25</volume><issue>7</issue><spage>1109</spage><epage>1113</epage><pages>1109-1113</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning network that performs feature extraction and classification, collectively dubbed Kernel Deep Regression Network (KDRN). The KDRN is built on multiple kernel ridge regressions (KRR) hierarchically, where each is trained analytically and independently. In principal, KDRN does not mean to learn directly from the raw touch-stroke data like other deep learning models, but it relearns from the pre-extracted features to yield a richer and a relatively more discriminative feature set. Subsequent to that, the authentication is carried out by KRR. Overall, KDRN achieves an equal error rate of 0.013% for intrasession authentication, 0.023% for intersession authentication, and 0.121% for interweek authentication on the Touchlaytics dataset.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2018.2846050</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6764-0614</orcidid><orcidid>https://orcid.org/0000-0001-5063-9484</orcidid><orcidid>https://orcid.org/0000-0002-9435-2052</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2018-07, Vol.25 (7), p.1109-1113 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_8378259 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Authentication biometrics Biometrics (access control) Feature extraction Hidden Markov models Kernel Machine learning stacking-based deep neural network touch-stroke dynamics Training |
title | Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20Deep%20Regression%20Network%20for%20Touch-Stroke%20Dynamics%20Authentication&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Chang,%20Inho&rft.date=2018-07&rft.volume=25&rft.issue=7&rft.spage=1109&rft.epage=1113&rft.pages=1109-1113&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2018.2846050&rft_dat=%3Ccrossref_ieee_%3E10_1109_LSP_2018_2846050%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8378259&rfr_iscdi=true |