Loading…

Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication

Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning networ...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2018-07, Vol.25 (7), p.1109-1113
Main Authors: Chang, Inho, Low, Cheng-Yaw, Choi, Seokmin, Teoh, Andrew Beng-Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653
cites cdi_FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653
container_end_page 1113
container_issue 7
container_start_page 1109
container_title IEEE signal processing letters
container_volume 25
creator Chang, Inho
Low, Cheng-Yaw
Choi, Seokmin
Teoh, Andrew Beng-Jin
description Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning network that performs feature extraction and classification, collectively dubbed Kernel Deep Regression Network (KDRN). The KDRN is built on multiple kernel ridge regressions (KRR) hierarchically, where each is trained analytically and independently. In principal, KDRN does not mean to learn directly from the raw touch-stroke data like other deep learning models, but it relearns from the pre-extracted features to yield a richer and a relatively more discriminative feature set. Subsequent to that, the authentication is carried out by KRR. Overall, KDRN achieves an equal error rate of 0.013% for intrasession authentication, 0.023% for intersession authentication, and 0.121% for interweek authentication on the Touchlaytics dataset.
doi_str_mv 10.1109/LSP.2018.2846050
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8378259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8378259</ieee_id><sourcerecordid>10_1109_LSP_2018_2846050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653</originalsourceid><addsrcrecordid>eNo9kEFPwkAQhTdGExG9m3jZP9A62-10d48EFI2NGsFzs12mUoGW7JYQ_r0lEE_zDvO9vHyM3QuIhQDzmM8-4wSEjhOdZoBwwQYCUUeJzMRln0FBZAzoa3YTwi8AaKFxwKZv5Bta8wnRln_Rj6cQ6rbh79TtW7_iVev5vN25ZTTrfLsiPjk0dlO7wEe7bklNVzvb9cAtu6rsOtDd-Q7Z9_PTfPwS5R_T1_Eoj1ySyS5KUaFG0iYB6lcDOJ2hVsICSVsqqowiypAIlUyFXajUKVOmJSEtrMlQDhmcep1vQ_BUFVtfb6w_FAKKo4iiF1EcRRRnET3ycEJqIvp_11LpBI38A26sWcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chang, Inho ; Low, Cheng-Yaw ; Choi, Seokmin ; Teoh, Andrew Beng-Jin</creator><creatorcontrib>Chang, Inho ; Low, Cheng-Yaw ; Choi, Seokmin ; Teoh, Andrew Beng-Jin</creatorcontrib><description>Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning network that performs feature extraction and classification, collectively dubbed Kernel Deep Regression Network (KDRN). The KDRN is built on multiple kernel ridge regressions (KRR) hierarchically, where each is trained analytically and independently. In principal, KDRN does not mean to learn directly from the raw touch-stroke data like other deep learning models, but it relearns from the pre-extracted features to yield a richer and a relatively more discriminative feature set. Subsequent to that, the authentication is carried out by KRR. Overall, KDRN achieves an equal error rate of 0.013% for intrasession authentication, 0.023% for intersession authentication, and 0.121% for interweek authentication on the Touchlaytics dataset.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2018.2846050</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Authentication ; biometrics ; Biometrics (access control) ; Feature extraction ; Hidden Markov models ; Kernel ; Machine learning ; stacking-based deep neural network ; touch-stroke dynamics ; Training</subject><ispartof>IEEE signal processing letters, 2018-07, Vol.25 (7), p.1109-1113</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653</citedby><cites>FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653</cites><orcidid>0000-0002-6764-0614 ; 0000-0001-5063-9484 ; 0000-0002-9435-2052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8378259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chang, Inho</creatorcontrib><creatorcontrib>Low, Cheng-Yaw</creatorcontrib><creatorcontrib>Choi, Seokmin</creatorcontrib><creatorcontrib>Teoh, Andrew Beng-Jin</creatorcontrib><title>Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning network that performs feature extraction and classification, collectively dubbed Kernel Deep Regression Network (KDRN). The KDRN is built on multiple kernel ridge regressions (KRR) hierarchically, where each is trained analytically and independently. In principal, KDRN does not mean to learn directly from the raw touch-stroke data like other deep learning models, but it relearns from the pre-extracted features to yield a richer and a relatively more discriminative feature set. Subsequent to that, the authentication is carried out by KRR. Overall, KDRN achieves an equal error rate of 0.013% for intrasession authentication, 0.023% for intersession authentication, and 0.121% for interweek authentication on the Touchlaytics dataset.</description><subject>Authentication</subject><subject>biometrics</subject><subject>Biometrics (access control)</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>stacking-based deep neural network</subject><subject>touch-stroke dynamics</subject><subject>Training</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwkAQhTdGExG9m3jZP9A62-10d48EFI2NGsFzs12mUoGW7JYQ_r0lEE_zDvO9vHyM3QuIhQDzmM8-4wSEjhOdZoBwwQYCUUeJzMRln0FBZAzoa3YTwi8AaKFxwKZv5Bta8wnRln_Rj6cQ6rbh79TtW7_iVev5vN25ZTTrfLsiPjk0dlO7wEe7bklNVzvb9cAtu6rsOtDd-Q7Z9_PTfPwS5R_T1_Eoj1ySyS5KUaFG0iYB6lcDOJ2hVsICSVsqqowiypAIlUyFXajUKVOmJSEtrMlQDhmcep1vQ_BUFVtfb6w_FAKKo4iiF1EcRRRnET3ycEJqIvp_11LpBI38A26sWcc</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Chang, Inho</creator><creator>Low, Cheng-Yaw</creator><creator>Choi, Seokmin</creator><creator>Teoh, Andrew Beng-Jin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6764-0614</orcidid><orcidid>https://orcid.org/0000-0001-5063-9484</orcidid><orcidid>https://orcid.org/0000-0002-9435-2052</orcidid></search><sort><creationdate>201807</creationdate><title>Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication</title><author>Chang, Inho ; Low, Cheng-Yaw ; Choi, Seokmin ; Teoh, Andrew Beng-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Authentication</topic><topic>biometrics</topic><topic>Biometrics (access control)</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>stacking-based deep neural network</topic><topic>touch-stroke dynamics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Inho</creatorcontrib><creatorcontrib>Low, Cheng-Yaw</creatorcontrib><creatorcontrib>Choi, Seokmin</creatorcontrib><creatorcontrib>Teoh, Andrew Beng-Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Inho</au><au>Low, Cheng-Yaw</au><au>Choi, Seokmin</au><au>Teoh, Andrew Beng-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2018-07</date><risdate>2018</risdate><volume>25</volume><issue>7</issue><spage>1109</spage><epage>1113</epage><pages>1109-1113</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Touch-stroke dynamics is an emerging behavioral biometrics justified feasible for mobile identity management. A touch-stroke dynamics authentication system is composed of a hand-engineered feature extractor and a classifier separately. In this letter, we propose a stacking-based deep learning network that performs feature extraction and classification, collectively dubbed Kernel Deep Regression Network (KDRN). The KDRN is built on multiple kernel ridge regressions (KRR) hierarchically, where each is trained analytically and independently. In principal, KDRN does not mean to learn directly from the raw touch-stroke data like other deep learning models, but it relearns from the pre-extracted features to yield a richer and a relatively more discriminative feature set. Subsequent to that, the authentication is carried out by KRR. Overall, KDRN achieves an equal error rate of 0.013% for intrasession authentication, 0.023% for intersession authentication, and 0.121% for interweek authentication on the Touchlaytics dataset.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2018.2846050</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6764-0614</orcidid><orcidid>https://orcid.org/0000-0001-5063-9484</orcidid><orcidid>https://orcid.org/0000-0002-9435-2052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2018-07, Vol.25 (7), p.1109-1113
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_8378259
source IEEE Electronic Library (IEL) Journals
subjects Authentication
biometrics
Biometrics (access control)
Feature extraction
Hidden Markov models
Kernel
Machine learning
stacking-based deep neural network
touch-stroke dynamics
Training
title Kernel Deep Regression Network for Touch-Stroke Dynamics Authentication
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20Deep%20Regression%20Network%20for%20Touch-Stroke%20Dynamics%20Authentication&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Chang,%20Inho&rft.date=2018-07&rft.volume=25&rft.issue=7&rft.spage=1109&rft.epage=1113&rft.pages=1109-1113&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2018.2846050&rft_dat=%3Ccrossref_ieee_%3E10_1109_LSP_2018_2846050%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-457585e8920e10900c865871a0e3ab7ef97ee65ee57341ad74c79b4be5eda9653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8378259&rfr_iscdi=true