Loading…
TTLG - An Efficient Tensor Transposition Library for GPUs
This paper presents a Tensor Transposition Library for GPUs (TTLG). A distinguishing feature of TTLG is that it also includes a performance prediction model, which can be used by higher level optimizers that use tensor transposition. For example, tensor contractions are often implemented by using th...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a Tensor Transposition Library for GPUs (TTLG). A distinguishing feature of TTLG is that it also includes a performance prediction model, which can be used by higher level optimizers that use tensor transposition. For example, tensor contractions are often implemented by using the TTGT (Transpose-Transpose-GEMM-Transpose) approach - transpose input tensors to a suitable layout and then use high-performance matrix multiplication followed by transposition of the result. The performance model is also used internally by TTLG for choosing among alternative kernels and/or slicing/blocking parameters for the transposition. TTLG is compared with current state-of-the-art alternatives for GPUs. Comparable or better transposition times for the "repeated-use" scenario and considerably better "single-use" performance are observed. |
---|---|
ISSN: | 1530-2075 |
DOI: | 10.1109/IPDPS.2018.00067 |