Loading…

3-D Human Pose Estimation Using Cascade of Multiple Neural Networks

Estimating three-dimensional (3-D) human poses from a given two-dimensional (2-D) shape is still an inherently ill-posed problem in computer vision. This paper proposes a method called cascade of multiple neural networks (CMNN) to solve this problem in following two steps: 1) create the initial esti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2019-04, Vol.15 (4), p.2064-2072
Main Authors: Hoang, Van-Thanh, Jo, Kang-Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-d927887e9fc9c6558b30161bc59b7deb8eefdfe2e82fd50a11365e213ebf85483
cites cdi_FETCH-LOGICAL-c291t-d927887e9fc9c6558b30161bc59b7deb8eefdfe2e82fd50a11365e213ebf85483
container_end_page 2072
container_issue 4
container_start_page 2064
container_title IEEE transactions on industrial informatics
container_volume 15
creator Hoang, Van-Thanh
Jo, Kang-Hyun
description Estimating three-dimensional (3-D) human poses from a given two-dimensional (2-D) shape is still an inherently ill-posed problem in computer vision. This paper proposes a method called cascade of multiple neural networks (CMNN) to solve this problem in following two steps: 1) create the initial estimated 3-D shape using the Zhou et al. method with a small number of basis shapes and 2) make this initial shape more alike to the original shape by using the CMNN. In comparing to existing works, the proposed method shows a significant outperformance in both accuracy and processing time. This paper also introduces a new system called Human3D that can estimate the 3-D pose of all people in a single RGB image. This system comprises two part: convolution pose machine (CPM) for estimating 2-D poses of all people in an RGB image and CMNN for reconstructing 3-D poses of them from outputs of the CPM.
doi_str_mv 10.1109/TII.2018.2864824
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8432121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8432121</ieee_id><sourcerecordid>2203405031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d927887e9fc9c6558b30161bc59b7deb8eefdfe2e82fd50a11365e213ebf85483</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVwR-JiiXOK144T-4hCoZXK49CerTzWKCWNi50I8e9x1YrT7GFmR_MRcgtsBsD0w3q5nHEGasZVliqenpEJ6BQSxiQ7j7eUkAjOxCW5CmHLmMiZ0BNSiOSJLsZd2dMPF5DOw9DuyqF1Pd2Etv-kRRnqskHqLH0du6Hdd0jfcPRlF2X4cf4rXJMLW3YBb046JZvn-bpYJKv3l2XxuEpqrmFIGs1zpXLUttZ1JqWqBIMMqlrqKm-wUoi2schRcdtIVgKITCIHgZVVMlViSu6Pf_fefY8YBrN1o-9jpeFxWRqXCogudnTV3oXg0Zq9j5P8rwFmDqhMRGUOqMwJVYzcHSMtIv7bVSo4xPo_EnJjQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203405031</pqid></control><display><type>article</type><title>3-D Human Pose Estimation Using Cascade of Multiple Neural Networks</title><source>IEEE Xplore (Online service)</source><creator>Hoang, Van-Thanh ; Jo, Kang-Hyun</creator><creatorcontrib>Hoang, Van-Thanh ; Jo, Kang-Hyun</creatorcontrib><description>Estimating three-dimensional (3-D) human poses from a given two-dimensional (2-D) shape is still an inherently ill-posed problem in computer vision. This paper proposes a method called cascade of multiple neural networks (CMNN) to solve this problem in following two steps: 1) create the initial estimated 3-D shape using the Zhou et al. method with a small number of basis shapes and 2) make this initial shape more alike to the original shape by using the CMNN. In comparing to existing works, the proposed method shows a significant outperformance in both accuracy and processing time. This paper also introduces a new system called Human3D that can estimate the 3-D pose of all people in a single RGB image. This system comprises two part: convolution pose machine (CPM) for estimating 2-D poses of all people in an RGB image and CMNN for reconstructing 3-D poses of them from outputs of the CPM.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2864824</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3-D human pose estimation ; Cameras ; Cascade of neural networks ; Computer vision ; Convolution ; Dictionaries ; Estimation ; human three-dimensional (3-D) system ; Ill posed problems ; Image reconstruction ; neural network ; Neural networks ; Pose estimation ; Shape ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>IEEE transactions on industrial informatics, 2019-04, Vol.15 (4), p.2064-2072</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d927887e9fc9c6558b30161bc59b7deb8eefdfe2e82fd50a11365e213ebf85483</citedby><cites>FETCH-LOGICAL-c291t-d927887e9fc9c6558b30161bc59b7deb8eefdfe2e82fd50a11365e213ebf85483</cites><orcidid>0000-0003-3478-9954 ; 0000-0002-4937-7082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8432121$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Hoang, Van-Thanh</creatorcontrib><creatorcontrib>Jo, Kang-Hyun</creatorcontrib><title>3-D Human Pose Estimation Using Cascade of Multiple Neural Networks</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Estimating three-dimensional (3-D) human poses from a given two-dimensional (2-D) shape is still an inherently ill-posed problem in computer vision. This paper proposes a method called cascade of multiple neural networks (CMNN) to solve this problem in following two steps: 1) create the initial estimated 3-D shape using the Zhou et al. method with a small number of basis shapes and 2) make this initial shape more alike to the original shape by using the CMNN. In comparing to existing works, the proposed method shows a significant outperformance in both accuracy and processing time. This paper also introduces a new system called Human3D that can estimate the 3-D pose of all people in a single RGB image. This system comprises two part: convolution pose machine (CPM) for estimating 2-D poses of all people in an RGB image and CMNN for reconstructing 3-D poses of them from outputs of the CPM.</description><subject>3-D human pose estimation</subject><subject>Cameras</subject><subject>Cascade of neural networks</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Dictionaries</subject><subject>Estimation</subject><subject>human three-dimensional (3-D) system</subject><subject>Ill posed problems</subject><subject>Image reconstruction</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Pose estimation</subject><subject>Shape</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEqVwR-JiiXOK144T-4hCoZXK49CerTzWKCWNi50I8e9x1YrT7GFmR_MRcgtsBsD0w3q5nHEGasZVliqenpEJ6BQSxiQ7j7eUkAjOxCW5CmHLmMiZ0BNSiOSJLsZd2dMPF5DOw9DuyqF1Pd2Etv-kRRnqskHqLH0du6Hdd0jfcPRlF2X4cf4rXJMLW3YBb046JZvn-bpYJKv3l2XxuEpqrmFIGs1zpXLUttZ1JqWqBIMMqlrqKm-wUoi2schRcdtIVgKITCIHgZVVMlViSu6Pf_fefY8YBrN1o-9jpeFxWRqXCogudnTV3oXg0Zq9j5P8rwFmDqhMRGUOqMwJVYzcHSMtIv7bVSo4xPo_EnJjQg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Hoang, Van-Thanh</creator><creator>Jo, Kang-Hyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3478-9954</orcidid><orcidid>https://orcid.org/0000-0002-4937-7082</orcidid></search><sort><creationdate>20190401</creationdate><title>3-D Human Pose Estimation Using Cascade of Multiple Neural Networks</title><author>Hoang, Van-Thanh ; Jo, Kang-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d927887e9fc9c6558b30161bc59b7deb8eefdfe2e82fd50a11365e213ebf85483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3-D human pose estimation</topic><topic>Cameras</topic><topic>Cascade of neural networks</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Dictionaries</topic><topic>Estimation</topic><topic>human three-dimensional (3-D) system</topic><topic>Ill posed problems</topic><topic>Image reconstruction</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Pose estimation</topic><topic>Shape</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoang, Van-Thanh</creatorcontrib><creatorcontrib>Jo, Kang-Hyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoang, Van-Thanh</au><au>Jo, Kang-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Human Pose Estimation Using Cascade of Multiple Neural Networks</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>2064</spage><epage>2072</epage><pages>2064-2072</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Estimating three-dimensional (3-D) human poses from a given two-dimensional (2-D) shape is still an inherently ill-posed problem in computer vision. This paper proposes a method called cascade of multiple neural networks (CMNN) to solve this problem in following two steps: 1) create the initial estimated 3-D shape using the Zhou et al. method with a small number of basis shapes and 2) make this initial shape more alike to the original shape by using the CMNN. In comparing to existing works, the proposed method shows a significant outperformance in both accuracy and processing time. This paper also introduces a new system called Human3D that can estimate the 3-D pose of all people in a single RGB image. This system comprises two part: convolution pose machine (CPM) for estimating 2-D poses of all people in an RGB image and CMNN for reconstructing 3-D poses of them from outputs of the CPM.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2864824</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3478-9954</orcidid><orcidid>https://orcid.org/0000-0002-4937-7082</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2019-04, Vol.15 (4), p.2064-2072
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_8432121
source IEEE Xplore (Online service)
subjects 3-D human pose estimation
Cameras
Cascade of neural networks
Computer vision
Convolution
Dictionaries
Estimation
human three-dimensional (3-D) system
Ill posed problems
Image reconstruction
neural network
Neural networks
Pose estimation
Shape
Three-dimensional displays
Two dimensional displays
title 3-D Human Pose Estimation Using Cascade of Multiple Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Human%20Pose%20Estimation%20Using%20Cascade%20of%20Multiple%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Hoang,%20Van-Thanh&rft.date=2019-04-01&rft.volume=15&rft.issue=4&rft.spage=2064&rft.epage=2072&rft.pages=2064-2072&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2864824&rft_dat=%3Cproquest_ieee_%3E2203405031%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-d927887e9fc9c6558b30161bc59b7deb8eefdfe2e82fd50a11365e213ebf85483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203405031&rft_id=info:pmid/&rft_ieee_id=8432121&rfr_iscdi=true