Loading…

Evaluating Collaborative Filtering Recommender Algorithms: A Survey

Due to the explosion of available information on the Internet, the need for effective means of accessing and processing them has become vital for everyone. Recommender systems have been developed to help users to find what they may be interested in and business owners to sell their products more eff...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2018, Vol.6, p.74003-74024
Main Authors: Jalili, Mahdi, Ahmadian, Sajad, Izadi, Maliheh, Moradi, Parham, Salehi, Mostafa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the explosion of available information on the Internet, the need for effective means of accessing and processing them has become vital for everyone. Recommender systems have been developed to help users to find what they may be interested in and business owners to sell their products more efficiently. They have found much attention in both academia and industry. A recommender algorithm takes into account user-item interactions, i.e., rating (or purchase) history of users on items, and their contextual information, if available. It then provides a list of potential items for each target user, such that the user is likely to positively rate (or purchase) them. In this paper, we review evaluation metrics used to assess performance of recommendation algorithms. We also survey a number of classical and modern recommendation algorithms and compare their performance in terms of different evaluation metrics on five benchmark datasets. Our experiments show that there is no golden recommendation algorithm showing the best performance in all evaluation metrics. We also find large variability across the datasets. This indicates that one should carefully consider the evaluation criteria in choosing a recommendation algorithm for a particular application.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2883742