Loading…
Boosting image retrieval
We present an approach for image retrieval using a very large number of highly selective features and efficient online learning. Our approach is predicated on the assumption that each image is generated by a sparse set of visual "causes" and that images which are visually similar share cau...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an approach for image retrieval using a very large number of highly selective features and efficient online learning. Our approach is predicated on the assumption that each image is generated by a sparse set of visual "causes" and that images which are visually similar share causes. We propose a mechanism for computing a very large number of highly selective features which capture some aspects of this causal structure (in our implementation there are over 45,000 highly selective features). At query time a user selects a few example images, and a technique known as "boosting" is used to learn a classification function in this feature space. By construction, the boosting procedure learns a simple classifier which only relies on 20 of the features. As a result a very large database of images can be scanned rapidly, perhaps a million images per second. Finally we will describe a set of experiments performed using our retrieval system on a database of 3000 images. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2000.855824 |