Loading…
On global asymptotic stability of fully connected recurrent neural networks
Conditions for global asymptotic stability (GAS) of a nonlinear relaxation process realized by a recurrent neural network (RNN) are provided. Existence, convergence, and robustness of such a process are analyzed. This is undertaken based upon the contraction mapping theorem (CMT) and the correspondi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conditions for global asymptotic stability (GAS) of a nonlinear relaxation process realized by a recurrent neural network (RNN) are provided. Existence, convergence, and robustness of such a process are analyzed. This is undertaken based upon the contraction mapping theorem (CMT) and the corresponding fixed point iteration (FPI). Upper bounds for such a process are shown to be the conditions of convergence for a commonly analyzed RNN with a linear state dependence. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2000.860132 |