Loading…

Modelling Cyber Attacks on Electricity Market Using Mathematical Programming With Equilibrium Constraints

With the development of communication infrastructure in smart grids, cyber security reinforcement has become one of the most challenging issues for power system operators. In this paper, an attacker is considered a participant in the virtual bidding procedure in the day-ahead (DA) and real-time (RT)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.27376-27388
Main Authors: Ahmadian, Saeed, Tang, Xiao, Malki, Heidar A., Han, Zhu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the development of communication infrastructure in smart grids, cyber security reinforcement has become one of the most challenging issues for power system operators. In this paper, an attacker is considered a participant in the virtual bidding procedure in the day-ahead (DA) and real-time (RT) electricity markets to maximize its profit. The cyber attacker attempts to identify the optimal power system measurements to attack along with the false data injected into measurement devices. Towards the maximum profit, the attacker needs to specify the relation between manipulated meters, virtual power traded in the markets, and electricity prices. Meanwhile, to avoid being detected by the system operator, the attacker considers the physical power system constraints existing in the DA and RT markets. Then, a bi-level optimization model is presented which combines the real electricity market state variables with the attacker decision-variables. Using the mathematical problem with equilibrium constraints, the presented bi-level model is converted into a single level optimization problem and the optimal decision variables for the attacker are obtained. Finally, simulation results are provided to demonstrate the performance of the attacker, which also provides insights for security improvement.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2899293