Loading…
Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations
The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefron...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 16 |
container_issue | |
container_start_page | 9 |
container_title | |
container_volume | |
creator | Drocco, Maurizio Viviani, Paolo Colonnelli, Iacopo Aldinucci, Marco Grangetto, Marco |
description | The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefront running over a tiled matrix, involving expensive linear algebra kernels. While these applications might benefit from parallel heterogeneous platforms (multi-core with GPUs), programming wavefront applications directly with high-performance linear algebra libraries yields code that is complex to write and optimize for the specific application. We advocate a methodology based on two abstractions (linear algebra and parallel pattern-based run-time), that allows to develop portable, self-configuring, and easy-to-profile code on hybrid platforms. |
doi_str_mv | 10.1109/EMPDP.2019.8671640 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8671640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8671640</ieee_id><sourcerecordid>8671640</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-b15261db41f0a9bd5365933a88a41b8983ed7567202ed6de8826d5881b51e1493</originalsourceid><addsrcrecordid>eNotkMtKw0AUQEdBsK3-gG7mBxLnzmRey1BrFSItGHFZJsnNQ2ISZqLQv69oV-eszuIQcgcsBmD2YfO6f9zHnIGNjdKgEnZBlqC5gV9P7CVZcKF1JLVk12QZwidjTCfcLkieliX26N3cDQ19m7Ccvevp1ruppeng-mPoAs1bP343Lf1wP1j7cZgDHWuadQM6T9O-wcI7upv-MuMQbshV7fqAt2euyPvTJl8_R9lu-7JOs6jjYOeoAMkVVEUCNXO2qKRQ0grhjHEJFMYagZWWSnPGsVIVGsNVJY2BQgJCYsWK3P93O0Q8TL77cv54OB8QJ23BT8A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations</title><source>IEEE Xplore All Conference Series</source><creator>Drocco, Maurizio ; Viviani, Paolo ; Colonnelli, Iacopo ; Aldinucci, Marco ; Grangetto, Marco</creator><creatorcontrib>Drocco, Maurizio ; Viviani, Paolo ; Colonnelli, Iacopo ; Aldinucci, Marco ; Grangetto, Marco</creatorcontrib><description>The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefront running over a tiled matrix, involving expensive linear algebra kernels. While these applications might benefit from parallel heterogeneous platforms (multi-core with GPUs), programming wavefront applications directly with high-performance linear algebra libraries yields code that is complex to write and optimize for the specific application. We advocate a methodology based on two abstractions (linear algebra and parallel pattern-based run-time), that allows to develop portable, self-configuring, and easy-to-profile code on hybrid platforms.</description><identifier>EISSN: 2377-5750</identifier><identifier>EISBN: 1728116449</identifier><identifier>EISBN: 9781728116440</identifier><identifier>DOI: 10.1109/EMPDP.2019.8671640</identifier><language>eng</language><publisher>IEEE</publisher><subject>GPU ; Graphics processing units ; hybrid ; Kernel ; Libraries ; linear algebra ; Matrix decomposition ; Symmetric matrices ; wavefront</subject><ispartof>2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2019, p.9-16</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8671640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8671640$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Drocco, Maurizio</creatorcontrib><creatorcontrib>Viviani, Paolo</creatorcontrib><creatorcontrib>Colonnelli, Iacopo</creatorcontrib><creatorcontrib>Aldinucci, Marco</creatorcontrib><creatorcontrib>Grangetto, Marco</creatorcontrib><title>Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations</title><title>2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)</title><addtitle>EMPDP</addtitle><description>The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefront running over a tiled matrix, involving expensive linear algebra kernels. While these applications might benefit from parallel heterogeneous platforms (multi-core with GPUs), programming wavefront applications directly with high-performance linear algebra libraries yields code that is complex to write and optimize for the specific application. We advocate a methodology based on two abstractions (linear algebra and parallel pattern-based run-time), that allows to develop portable, self-configuring, and easy-to-profile code on hybrid platforms.</description><subject>GPU</subject><subject>Graphics processing units</subject><subject>hybrid</subject><subject>Kernel</subject><subject>Libraries</subject><subject>linear algebra</subject><subject>Matrix decomposition</subject><subject>Symmetric matrices</subject><subject>wavefront</subject><issn>2377-5750</issn><isbn>1728116449</isbn><isbn>9781728116440</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKw0AUQEdBsK3-gG7mBxLnzmRey1BrFSItGHFZJsnNQ2ISZqLQv69oV-eszuIQcgcsBmD2YfO6f9zHnIGNjdKgEnZBlqC5gV9P7CVZcKF1JLVk12QZwidjTCfcLkieliX26N3cDQ19m7Ccvevp1ruppeng-mPoAs1bP343Lf1wP1j7cZgDHWuadQM6T9O-wcI7upv-MuMQbshV7fqAt2euyPvTJl8_R9lu-7JOs6jjYOeoAMkVVEUCNXO2qKRQ0grhjHEJFMYagZWWSnPGsVIVGsNVJY2BQgJCYsWK3P93O0Q8TL77cv54OB8QJ23BT8A</recordid><startdate>20190319</startdate><enddate>20190319</enddate><creator>Drocco, Maurizio</creator><creator>Viviani, Paolo</creator><creator>Colonnelli, Iacopo</creator><creator>Aldinucci, Marco</creator><creator>Grangetto, Marco</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20190319</creationdate><title>Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations</title><author>Drocco, Maurizio ; Viviani, Paolo ; Colonnelli, Iacopo ; Aldinucci, Marco ; Grangetto, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-b15261db41f0a9bd5365933a88a41b8983ed7567202ed6de8826d5881b51e1493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>GPU</topic><topic>Graphics processing units</topic><topic>hybrid</topic><topic>Kernel</topic><topic>Libraries</topic><topic>linear algebra</topic><topic>Matrix decomposition</topic><topic>Symmetric matrices</topic><topic>wavefront</topic><toplevel>online_resources</toplevel><creatorcontrib>Drocco, Maurizio</creatorcontrib><creatorcontrib>Viviani, Paolo</creatorcontrib><creatorcontrib>Colonnelli, Iacopo</creatorcontrib><creatorcontrib>Aldinucci, Marco</creatorcontrib><creatorcontrib>Grangetto, Marco</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Drocco, Maurizio</au><au>Viviani, Paolo</au><au>Colonnelli, Iacopo</au><au>Aldinucci, Marco</au><au>Grangetto, Marco</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations</atitle><btitle>2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)</btitle><stitle>EMPDP</stitle><date>2019-03-19</date><risdate>2019</risdate><spage>9</spage><epage>16</epage><pages>9-16</pages><eissn>2377-5750</eissn><eisbn>1728116449</eisbn><eisbn>9781728116440</eisbn><abstract>The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefront running over a tiled matrix, involving expensive linear algebra kernels. While these applications might benefit from parallel heterogeneous platforms (multi-core with GPUs), programming wavefront applications directly with high-performance linear algebra libraries yields code that is complex to write and optimize for the specific application. We advocate a methodology based on two abstractions (linear algebra and parallel pattern-based run-time), that allows to develop portable, self-configuring, and easy-to-profile code on hybrid platforms.</abstract><pub>IEEE</pub><doi>10.1109/EMPDP.2019.8671640</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2377-5750 |
ispartof | 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2019, p.9-16 |
issn | 2377-5750 |
language | eng |
recordid | cdi_ieee_primary_8671640 |
source | IEEE Xplore All Conference Series |
subjects | GPU Graphics processing units hybrid Kernel Libraries linear algebra Matrix decomposition Symmetric matrices wavefront |
title | Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T07%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accelerating%20Spectral%20Graph%20Analysis%20Through%20Wavefronts%20of%20Linear%20Algebra%20Operations&rft.btitle=2019%2027th%20Euromicro%20International%20Conference%20on%20Parallel,%20Distributed%20and%20Network-Based%20Processing%20(PDP)&rft.au=Drocco,%20Maurizio&rft.date=2019-03-19&rft.spage=9&rft.epage=16&rft.pages=9-16&rft.eissn=2377-5750&rft_id=info:doi/10.1109/EMPDP.2019.8671640&rft.eisbn=1728116449&rft.eisbn_list=9781728116440&rft_dat=%3Cieee_CHZPO%3E8671640%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i219t-b15261db41f0a9bd5365933a88a41b8983ed7567202ed6de8826d5881b51e1493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8671640&rfr_iscdi=true |