Loading…

Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations

The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefron...

Full description

Saved in:
Bibliographic Details
Main Authors: Drocco, Maurizio, Viviani, Paolo, Colonnelli, Iacopo, Aldinucci, Marco, Grangetto, Marco
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 16
container_issue
container_start_page 9
container_title
container_volume
creator Drocco, Maurizio
Viviani, Paolo
Colonnelli, Iacopo
Aldinucci, Marco
Grangetto, Marco
description The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefront running over a tiled matrix, involving expensive linear algebra kernels. While these applications might benefit from parallel heterogeneous platforms (multi-core with GPUs), programming wavefront applications directly with high-performance linear algebra libraries yields code that is complex to write and optimize for the specific application. We advocate a methodology based on two abstractions (linear algebra and parallel pattern-based run-time), that allows to develop portable, self-configuring, and easy-to-profile code on hybrid platforms.
doi_str_mv 10.1109/EMPDP.2019.8671640
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8671640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8671640</ieee_id><sourcerecordid>8671640</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-b15261db41f0a9bd5365933a88a41b8983ed7567202ed6de8826d5881b51e1493</originalsourceid><addsrcrecordid>eNotkMtKw0AUQEdBsK3-gG7mBxLnzmRey1BrFSItGHFZJsnNQ2ISZqLQv69oV-eszuIQcgcsBmD2YfO6f9zHnIGNjdKgEnZBlqC5gV9P7CVZcKF1JLVk12QZwidjTCfcLkieliX26N3cDQ19m7Ccvevp1ruppeng-mPoAs1bP343Lf1wP1j7cZgDHWuadQM6T9O-wcI7upv-MuMQbshV7fqAt2euyPvTJl8_R9lu-7JOs6jjYOeoAMkVVEUCNXO2qKRQ0grhjHEJFMYagZWWSnPGsVIVGsNVJY2BQgJCYsWK3P93O0Q8TL77cv54OB8QJ23BT8A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations</title><source>IEEE Xplore All Conference Series</source><creator>Drocco, Maurizio ; Viviani, Paolo ; Colonnelli, Iacopo ; Aldinucci, Marco ; Grangetto, Marco</creator><creatorcontrib>Drocco, Maurizio ; Viviani, Paolo ; Colonnelli, Iacopo ; Aldinucci, Marco ; Grangetto, Marco</creatorcontrib><description>The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefront running over a tiled matrix, involving expensive linear algebra kernels. While these applications might benefit from parallel heterogeneous platforms (multi-core with GPUs), programming wavefront applications directly with high-performance linear algebra libraries yields code that is complex to write and optimize for the specific application. We advocate a methodology based on two abstractions (linear algebra and parallel pattern-based run-time), that allows to develop portable, self-configuring, and easy-to-profile code on hybrid platforms.</description><identifier>EISSN: 2377-5750</identifier><identifier>EISBN: 1728116449</identifier><identifier>EISBN: 9781728116440</identifier><identifier>DOI: 10.1109/EMPDP.2019.8671640</identifier><language>eng</language><publisher>IEEE</publisher><subject>GPU ; Graphics processing units ; hybrid ; Kernel ; Libraries ; linear algebra ; Matrix decomposition ; Symmetric matrices ; wavefront</subject><ispartof>2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2019, p.9-16</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8671640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8671640$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Drocco, Maurizio</creatorcontrib><creatorcontrib>Viviani, Paolo</creatorcontrib><creatorcontrib>Colonnelli, Iacopo</creatorcontrib><creatorcontrib>Aldinucci, Marco</creatorcontrib><creatorcontrib>Grangetto, Marco</creatorcontrib><title>Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations</title><title>2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)</title><addtitle>EMPDP</addtitle><description>The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefront running over a tiled matrix, involving expensive linear algebra kernels. While these applications might benefit from parallel heterogeneous platforms (multi-core with GPUs), programming wavefront applications directly with high-performance linear algebra libraries yields code that is complex to write and optimize for the specific application. We advocate a methodology based on two abstractions (linear algebra and parallel pattern-based run-time), that allows to develop portable, self-configuring, and easy-to-profile code on hybrid platforms.</description><subject>GPU</subject><subject>Graphics processing units</subject><subject>hybrid</subject><subject>Kernel</subject><subject>Libraries</subject><subject>linear algebra</subject><subject>Matrix decomposition</subject><subject>Symmetric matrices</subject><subject>wavefront</subject><issn>2377-5750</issn><isbn>1728116449</isbn><isbn>9781728116440</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKw0AUQEdBsK3-gG7mBxLnzmRey1BrFSItGHFZJsnNQ2ISZqLQv69oV-eszuIQcgcsBmD2YfO6f9zHnIGNjdKgEnZBlqC5gV9P7CVZcKF1JLVk12QZwidjTCfcLkieliX26N3cDQ19m7Ccvevp1ruppeng-mPoAs1bP343Lf1wP1j7cZgDHWuadQM6T9O-wcI7upv-MuMQbshV7fqAt2euyPvTJl8_R9lu-7JOs6jjYOeoAMkVVEUCNXO2qKRQ0grhjHEJFMYagZWWSnPGsVIVGsNVJY2BQgJCYsWK3P93O0Q8TL77cv54OB8QJ23BT8A</recordid><startdate>20190319</startdate><enddate>20190319</enddate><creator>Drocco, Maurizio</creator><creator>Viviani, Paolo</creator><creator>Colonnelli, Iacopo</creator><creator>Aldinucci, Marco</creator><creator>Grangetto, Marco</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20190319</creationdate><title>Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations</title><author>Drocco, Maurizio ; Viviani, Paolo ; Colonnelli, Iacopo ; Aldinucci, Marco ; Grangetto, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-b15261db41f0a9bd5365933a88a41b8983ed7567202ed6de8826d5881b51e1493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>GPU</topic><topic>Graphics processing units</topic><topic>hybrid</topic><topic>Kernel</topic><topic>Libraries</topic><topic>linear algebra</topic><topic>Matrix decomposition</topic><topic>Symmetric matrices</topic><topic>wavefront</topic><toplevel>online_resources</toplevel><creatorcontrib>Drocco, Maurizio</creatorcontrib><creatorcontrib>Viviani, Paolo</creatorcontrib><creatorcontrib>Colonnelli, Iacopo</creatorcontrib><creatorcontrib>Aldinucci, Marco</creatorcontrib><creatorcontrib>Grangetto, Marco</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Drocco, Maurizio</au><au>Viviani, Paolo</au><au>Colonnelli, Iacopo</au><au>Aldinucci, Marco</au><au>Grangetto, Marco</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations</atitle><btitle>2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)</btitle><stitle>EMPDP</stitle><date>2019-03-19</date><risdate>2019</risdate><spage>9</spage><epage>16</epage><pages>9-16</pages><eissn>2377-5750</eissn><eisbn>1728116449</eisbn><eisbn>9781728116440</eisbn><abstract>The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefront running over a tiled matrix, involving expensive linear algebra kernels. While these applications might benefit from parallel heterogeneous platforms (multi-core with GPUs), programming wavefront applications directly with high-performance linear algebra libraries yields code that is complex to write and optimize for the specific application. We advocate a methodology based on two abstractions (linear algebra and parallel pattern-based run-time), that allows to develop portable, self-configuring, and easy-to-profile code on hybrid platforms.</abstract><pub>IEEE</pub><doi>10.1109/EMPDP.2019.8671640</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2377-5750
ispartof 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 2019, p.9-16
issn 2377-5750
language eng
recordid cdi_ieee_primary_8671640
source IEEE Xplore All Conference Series
subjects GPU
Graphics processing units
hybrid
Kernel
Libraries
linear algebra
Matrix decomposition
Symmetric matrices
wavefront
title Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T07%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accelerating%20Spectral%20Graph%20Analysis%20Through%20Wavefronts%20of%20Linear%20Algebra%20Operations&rft.btitle=2019%2027th%20Euromicro%20International%20Conference%20on%20Parallel,%20Distributed%20and%20Network-Based%20Processing%20(PDP)&rft.au=Drocco,%20Maurizio&rft.date=2019-03-19&rft.spage=9&rft.epage=16&rft.pages=9-16&rft.eissn=2377-5750&rft_id=info:doi/10.1109/EMPDP.2019.8671640&rft.eisbn=1728116449&rft.eisbn_list=9781728116440&rft_dat=%3Cieee_CHZPO%3E8671640%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i219t-b15261db41f0a9bd5365933a88a41b8983ed7567202ed6de8826d5881b51e1493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8671640&rfr_iscdi=true