Loading…

Dielectric Resonator-Based Passive Chipless Tag With Angle-of-Arrival Sensing

Passive chipless tags based on dielectric resonators (DRs) have been proposed for a novel millimeter-wave indoor self-localization system to mark fixed reference nodes. The tags employed in the system provide a unique spectral signature (resonance peaks) with much-increased radar cross section (RCS)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2019-05, Vol.67 (5), p.2010-2017
Main Authors: Alhaj Abbas, Ali, El-Absi, Mohammed, Abualhijaa, Ashraf, Solbach, Klaus, Kaiser, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Passive chipless tags based on dielectric resonators (DRs) have been proposed for a novel millimeter-wave indoor self-localization system to mark fixed reference nodes. The tags employed in the system provide a unique spectral signature (resonance peaks) with much-increased radar cross section (RCS) by placing several identical DRs at the focal line of a spherical dielectric lens. Resonators of optimized geometry allow a modification of this original DR-lens tag by combining the lens with different size DRs which exhibit resonant frequencies separated by large frequency gaps. For easier manufacturing and testing, a demonstrator tag was designed for a "scaled" frequency range of 5-6 GHz with this configuration and is shown to produce spectral signatures of the monostatic RCS which are uniquely related to the angle of arrival (AoA) of the incident wave from a reader. Simulated signatures of a lens of 120-mm diameter with seven spherical DRs are presented and results are supported by experiment. Correlation processing of the signatures can give a resolution of few degrees in AoA while the bistatic RCS half-power beamwidth is on the order of 20°, and RCS levels of resonant peaks are produced between 0 and −6 dBm 2 .
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2019.2901447