Loading…
Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation
Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between po...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between polyp malignancy, using features extracted from the Global Average Pooling (GAP) layer of a Convolutional Neural Network (CNNs). Two recent endoscopic modalities are used to improve the algorithm prediction: Blue Laser Imaging (BLI) and Linked Color Imaging (LCI). Furthermore, a new strategy of per-class data augmentation is adopted to tackle an unbalanced class distribution and to improve the decision of the classifiers. As a result, we increase the performance compared to state-of-the-art methods (0.97 vs 0.90 AUC). Our method for automatic polyp malignancy classification facilitates future advances towards patient safety and may avoid time-consuming and costly histopathological assessment. |
---|---|
ISSN: | 1945-8452 |
DOI: | 10.1109/ISBI.2019.8759320 |