Loading…
Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation
Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between po...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 78 |
container_issue | |
container_start_page | 74 |
container_title | |
container_volume | |
creator | Fonolla, Roger Sommen, Fons van der Schreuder, Ramon M. Schoon, Erik J. de With, Peter H.N. |
description | Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between polyp malignancy, using features extracted from the Global Average Pooling (GAP) layer of a Convolutional Neural Network (CNNs). Two recent endoscopic modalities are used to improve the algorithm prediction: Blue Laser Imaging (BLI) and Linked Color Imaging (LCI). Furthermore, a new strategy of per-class data augmentation is adopted to tackle an unbalanced class distribution and to improve the decision of the classifiers. As a result, we increase the performance compared to state-of-the-art methods (0.97 vs 0.90 AUC). Our method for automatic polyp malignancy classification facilitates future advances towards patient safety and may avoid time-consuming and costly histopathological assessment. |
doi_str_mv | 10.1109/ISBI.2019.8759320 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8759320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8759320</ieee_id><sourcerecordid>8759320</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-af23845f8397c0067f49b2d3a4b6aada9c0d211da9839bbbae663e6ce11231b63</originalsourceid><addsrcrecordid>eNotkFFLwzAUhaMgOGZ_gPiSP9CZm6Rp87gV5wbrFNTncdOmM5K1Y0mR_XuL23k5F87h43IIeQQ2A2D6ef2xWM84Az0r8kwLzm5IovMCMlEooSTALZmAlllayIzfkySEHzYql1IwOSGmGnx0adU36GnpMQTXuhqj6zvat_S99-cjrdC7fYddfaZDcN2eltstXVqMw8kG-uviN12gH3PbXBh0PuwPtov_nAdy16IPNrn6lHwtXz7LVbp5e12X803qIM9iii0X449tIXReM6byVmrDG4HSKMQGdc0aDjAeY8MYg1YpYVVtAbgAo8SUPF24zlq7O57cAU_n3XUV8Qew6laP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation</title><source>IEEE Xplore All Conference Series</source><creator>Fonolla, Roger ; Sommen, Fons van der ; Schreuder, Ramon M. ; Schoon, Erik J. ; de With, Peter H.N.</creator><creatorcontrib>Fonolla, Roger ; Sommen, Fons van der ; Schreuder, Ramon M. ; Schoon, Erik J. ; de With, Peter H.N.</creatorcontrib><description>Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between polyp malignancy, using features extracted from the Global Average Pooling (GAP) layer of a Convolutional Neural Network (CNNs). Two recent endoscopic modalities are used to improve the algorithm prediction: Blue Laser Imaging (BLI) and Linked Color Imaging (LCI). Furthermore, a new strategy of per-class data augmentation is adopted to tackle an unbalanced class distribution and to improve the decision of the classifiers. As a result, we increase the performance compared to state-of-the-art methods (0.97 vs 0.90 AUC). Our method for automatic polyp malignancy classification facilitates future advances towards patient safety and may avoid time-consuming and costly histopathological assessment.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781538636411</identifier><identifier>EISBN: 1538636417</identifier><identifier>DOI: 10.1109/ISBI.2019.8759320</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; BLI ; Blue Laser Imaging ; CNN ; Data Augmentation ; Feature extraction ; LCI ; Linked Color Imaging ; Polyp classification ; Sensitivity ; Support vector machines ; SVM ; Training ; Visualization</subject><ispartof>2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, p.74-78</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8759320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8759320$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fonolla, Roger</creatorcontrib><creatorcontrib>Sommen, Fons van der</creatorcontrib><creatorcontrib>Schreuder, Ramon M.</creatorcontrib><creatorcontrib>Schoon, Erik J.</creatorcontrib><creatorcontrib>de With, Peter H.N.</creatorcontrib><title>Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation</title><title>2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)</title><addtitle>ISBI</addtitle><description>Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between polyp malignancy, using features extracted from the Global Average Pooling (GAP) layer of a Convolutional Neural Network (CNNs). Two recent endoscopic modalities are used to improve the algorithm prediction: Blue Laser Imaging (BLI) and Linked Color Imaging (LCI). Furthermore, a new strategy of per-class data augmentation is adopted to tackle an unbalanced class distribution and to improve the decision of the classifiers. As a result, we increase the performance compared to state-of-the-art methods (0.97 vs 0.90 AUC). Our method for automatic polyp malignancy classification facilitates future advances towards patient safety and may avoid time-consuming and costly histopathological assessment.</description><subject>Biomedical imaging</subject><subject>BLI</subject><subject>Blue Laser Imaging</subject><subject>CNN</subject><subject>Data Augmentation</subject><subject>Feature extraction</subject><subject>LCI</subject><subject>Linked Color Imaging</subject><subject>Polyp classification</subject><subject>Sensitivity</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>Training</subject><subject>Visualization</subject><issn>1945-8452</issn><isbn>9781538636411</isbn><isbn>1538636417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkFFLwzAUhaMgOGZ_gPiSP9CZm6Rp87gV5wbrFNTncdOmM5K1Y0mR_XuL23k5F87h43IIeQQ2A2D6ef2xWM84Az0r8kwLzm5IovMCMlEooSTALZmAlllayIzfkySEHzYql1IwOSGmGnx0adU36GnpMQTXuhqj6zvat_S99-cjrdC7fYddfaZDcN2eltstXVqMw8kG-uviN12gH3PbXBh0PuwPtov_nAdy16IPNrn6lHwtXz7LVbp5e12X803qIM9iii0X449tIXReM6byVmrDG4HSKMQGdc0aDjAeY8MYg1YpYVVtAbgAo8SUPF24zlq7O57cAU_n3XUV8Qew6laP</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Fonolla, Roger</creator><creator>Sommen, Fons van der</creator><creator>Schreuder, Ramon M.</creator><creator>Schoon, Erik J.</creator><creator>de With, Peter H.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201904</creationdate><title>Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation</title><author>Fonolla, Roger ; Sommen, Fons van der ; Schreuder, Ramon M. ; Schoon, Erik J. ; de With, Peter H.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-af23845f8397c0067f49b2d3a4b6aada9c0d211da9839bbbae663e6ce11231b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical imaging</topic><topic>BLI</topic><topic>Blue Laser Imaging</topic><topic>CNN</topic><topic>Data Augmentation</topic><topic>Feature extraction</topic><topic>LCI</topic><topic>Linked Color Imaging</topic><topic>Polyp classification</topic><topic>Sensitivity</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Fonolla, Roger</creatorcontrib><creatorcontrib>Sommen, Fons van der</creatorcontrib><creatorcontrib>Schreuder, Ramon M.</creatorcontrib><creatorcontrib>Schoon, Erik J.</creatorcontrib><creatorcontrib>de With, Peter H.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fonolla, Roger</au><au>Sommen, Fons van der</au><au>Schreuder, Ramon M.</au><au>Schoon, Erik J.</au><au>de With, Peter H.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation</atitle><btitle>2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)</btitle><stitle>ISBI</stitle><date>2019-04</date><risdate>2019</risdate><spage>74</spage><epage>78</epage><pages>74-78</pages><eissn>1945-8452</eissn><eisbn>9781538636411</eisbn><eisbn>1538636417</eisbn><abstract>Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between polyp malignancy, using features extracted from the Global Average Pooling (GAP) layer of a Convolutional Neural Network (CNNs). Two recent endoscopic modalities are used to improve the algorithm prediction: Blue Laser Imaging (BLI) and Linked Color Imaging (LCI). Furthermore, a new strategy of per-class data augmentation is adopted to tackle an unbalanced class distribution and to improve the decision of the classifiers. As a result, we increase the performance compared to state-of-the-art methods (0.97 vs 0.90 AUC). Our method for automatic polyp malignancy classification facilitates future advances towards patient safety and may avoid time-consuming and costly histopathological assessment.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2019.8759320</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-8452 |
ispartof | 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, p.74-78 |
issn | 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_8759320 |
source | IEEE Xplore All Conference Series |
subjects | Biomedical imaging BLI Blue Laser Imaging CNN Data Augmentation Feature extraction LCI Linked Color Imaging Polyp classification Sensitivity Support vector machines SVM Training Visualization |
title | Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Modal%20Classification%20of%20Polyp%20Malignancy%20using%20CNN%20Features%20with%20Balanced%20Class%20Augmentation&rft.btitle=2019%20IEEE%2016th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI%202019)&rft.au=Fonolla,%20Roger&rft.date=2019-04&rft.spage=74&rft.epage=78&rft.pages=74-78&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI.2019.8759320&rft.eisbn=9781538636411&rft.eisbn_list=1538636417&rft_dat=%3Cieee_CHZPO%3E8759320%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-af23845f8397c0067f49b2d3a4b6aada9c0d211da9839bbbae663e6ce11231b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8759320&rfr_iscdi=true |