Loading…

Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation

Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between po...

Full description

Saved in:
Bibliographic Details
Main Authors: Fonolla, Roger, Sommen, Fons van der, Schreuder, Ramon M., Schoon, Erik J., de With, Peter H.N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 78
container_issue
container_start_page 74
container_title
container_volume
creator Fonolla, Roger
Sommen, Fons van der
Schreuder, Ramon M.
Schoon, Erik J.
de With, Peter H.N.
description Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between polyp malignancy, using features extracted from the Global Average Pooling (GAP) layer of a Convolutional Neural Network (CNNs). Two recent endoscopic modalities are used to improve the algorithm prediction: Blue Laser Imaging (BLI) and Linked Color Imaging (LCI). Furthermore, a new strategy of per-class data augmentation is adopted to tackle an unbalanced class distribution and to improve the decision of the classifiers. As a result, we increase the performance compared to state-of-the-art methods (0.97 vs 0.90 AUC). Our method for automatic polyp malignancy classification facilitates future advances towards patient safety and may avoid time-consuming and costly histopathological assessment.
doi_str_mv 10.1109/ISBI.2019.8759320
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8759320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8759320</ieee_id><sourcerecordid>8759320</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-af23845f8397c0067f49b2d3a4b6aada9c0d211da9839bbbae663e6ce11231b63</originalsourceid><addsrcrecordid>eNotkFFLwzAUhaMgOGZ_gPiSP9CZm6Rp87gV5wbrFNTncdOmM5K1Y0mR_XuL23k5F87h43IIeQQ2A2D6ef2xWM84Az0r8kwLzm5IovMCMlEooSTALZmAlllayIzfkySEHzYql1IwOSGmGnx0adU36GnpMQTXuhqj6zvat_S99-cjrdC7fYddfaZDcN2eltstXVqMw8kG-uviN12gH3PbXBh0PuwPtov_nAdy16IPNrn6lHwtXz7LVbp5e12X803qIM9iii0X449tIXReM6byVmrDG4HSKMQGdc0aDjAeY8MYg1YpYVVtAbgAo8SUPF24zlq7O57cAU_n3XUV8Qew6laP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation</title><source>IEEE Xplore All Conference Series</source><creator>Fonolla, Roger ; Sommen, Fons van der ; Schreuder, Ramon M. ; Schoon, Erik J. ; de With, Peter H.N.</creator><creatorcontrib>Fonolla, Roger ; Sommen, Fons van der ; Schreuder, Ramon M. ; Schoon, Erik J. ; de With, Peter H.N.</creatorcontrib><description>Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between polyp malignancy, using features extracted from the Global Average Pooling (GAP) layer of a Convolutional Neural Network (CNNs). Two recent endoscopic modalities are used to improve the algorithm prediction: Blue Laser Imaging (BLI) and Linked Color Imaging (LCI). Furthermore, a new strategy of per-class data augmentation is adopted to tackle an unbalanced class distribution and to improve the decision of the classifiers. As a result, we increase the performance compared to state-of-the-art methods (0.97 vs 0.90 AUC). Our method for automatic polyp malignancy classification facilitates future advances towards patient safety and may avoid time-consuming and costly histopathological assessment.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781538636411</identifier><identifier>EISBN: 1538636417</identifier><identifier>DOI: 10.1109/ISBI.2019.8759320</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; BLI ; Blue Laser Imaging ; CNN ; Data Augmentation ; Feature extraction ; LCI ; Linked Color Imaging ; Polyp classification ; Sensitivity ; Support vector machines ; SVM ; Training ; Visualization</subject><ispartof>2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, p.74-78</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8759320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8759320$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fonolla, Roger</creatorcontrib><creatorcontrib>Sommen, Fons van der</creatorcontrib><creatorcontrib>Schreuder, Ramon M.</creatorcontrib><creatorcontrib>Schoon, Erik J.</creatorcontrib><creatorcontrib>de With, Peter H.N.</creatorcontrib><title>Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation</title><title>2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)</title><addtitle>ISBI</addtitle><description>Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between polyp malignancy, using features extracted from the Global Average Pooling (GAP) layer of a Convolutional Neural Network (CNNs). Two recent endoscopic modalities are used to improve the algorithm prediction: Blue Laser Imaging (BLI) and Linked Color Imaging (LCI). Furthermore, a new strategy of per-class data augmentation is adopted to tackle an unbalanced class distribution and to improve the decision of the classifiers. As a result, we increase the performance compared to state-of-the-art methods (0.97 vs 0.90 AUC). Our method for automatic polyp malignancy classification facilitates future advances towards patient safety and may avoid time-consuming and costly histopathological assessment.</description><subject>Biomedical imaging</subject><subject>BLI</subject><subject>Blue Laser Imaging</subject><subject>CNN</subject><subject>Data Augmentation</subject><subject>Feature extraction</subject><subject>LCI</subject><subject>Linked Color Imaging</subject><subject>Polyp classification</subject><subject>Sensitivity</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>Training</subject><subject>Visualization</subject><issn>1945-8452</issn><isbn>9781538636411</isbn><isbn>1538636417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkFFLwzAUhaMgOGZ_gPiSP9CZm6Rp87gV5wbrFNTncdOmM5K1Y0mR_XuL23k5F87h43IIeQQ2A2D6ef2xWM84Az0r8kwLzm5IovMCMlEooSTALZmAlllayIzfkySEHzYql1IwOSGmGnx0adU36GnpMQTXuhqj6zvat_S99-cjrdC7fYddfaZDcN2eltstXVqMw8kG-uviN12gH3PbXBh0PuwPtov_nAdy16IPNrn6lHwtXz7LVbp5e12X803qIM9iii0X449tIXReM6byVmrDG4HSKMQGdc0aDjAeY8MYg1YpYVVtAbgAo8SUPF24zlq7O57cAU_n3XUV8Qew6laP</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Fonolla, Roger</creator><creator>Sommen, Fons van der</creator><creator>Schreuder, Ramon M.</creator><creator>Schoon, Erik J.</creator><creator>de With, Peter H.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201904</creationdate><title>Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation</title><author>Fonolla, Roger ; Sommen, Fons van der ; Schreuder, Ramon M. ; Schoon, Erik J. ; de With, Peter H.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-af23845f8397c0067f49b2d3a4b6aada9c0d211da9839bbbae663e6ce11231b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical imaging</topic><topic>BLI</topic><topic>Blue Laser Imaging</topic><topic>CNN</topic><topic>Data Augmentation</topic><topic>Feature extraction</topic><topic>LCI</topic><topic>Linked Color Imaging</topic><topic>Polyp classification</topic><topic>Sensitivity</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Fonolla, Roger</creatorcontrib><creatorcontrib>Sommen, Fons van der</creatorcontrib><creatorcontrib>Schreuder, Ramon M.</creatorcontrib><creatorcontrib>Schoon, Erik J.</creatorcontrib><creatorcontrib>de With, Peter H.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fonolla, Roger</au><au>Sommen, Fons van der</au><au>Schreuder, Ramon M.</au><au>Schoon, Erik J.</au><au>de With, Peter H.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation</atitle><btitle>2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)</btitle><stitle>ISBI</stitle><date>2019-04</date><risdate>2019</risdate><spage>74</spage><epage>78</epage><pages>74-78</pages><eissn>1945-8452</eissn><eisbn>9781538636411</eisbn><eisbn>1538636417</eisbn><abstract>Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between polyp malignancy, using features extracted from the Global Average Pooling (GAP) layer of a Convolutional Neural Network (CNNs). Two recent endoscopic modalities are used to improve the algorithm prediction: Blue Laser Imaging (BLI) and Linked Color Imaging (LCI). Furthermore, a new strategy of per-class data augmentation is adopted to tackle an unbalanced class distribution and to improve the decision of the classifiers. As a result, we increase the performance compared to state-of-the-art methods (0.97 vs 0.90 AUC). Our method for automatic polyp malignancy classification facilitates future advances towards patient safety and may avoid time-consuming and costly histopathological assessment.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2019.8759320</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, p.74-78
issn 1945-8452
language eng
recordid cdi_ieee_primary_8759320
source IEEE Xplore All Conference Series
subjects Biomedical imaging
BLI
Blue Laser Imaging
CNN
Data Augmentation
Feature extraction
LCI
Linked Color Imaging
Polyp classification
Sensitivity
Support vector machines
SVM
Training
Visualization
title Multi-Modal Classification of Polyp Malignancy using CNN Features with Balanced Class Augmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Modal%20Classification%20of%20Polyp%20Malignancy%20using%20CNN%20Features%20with%20Balanced%20Class%20Augmentation&rft.btitle=2019%20IEEE%2016th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI%202019)&rft.au=Fonolla,%20Roger&rft.date=2019-04&rft.spage=74&rft.epage=78&rft.pages=74-78&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI.2019.8759320&rft.eisbn=9781538636411&rft.eisbn_list=1538636417&rft_dat=%3Cieee_CHZPO%3E8759320%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-af23845f8397c0067f49b2d3a4b6aada9c0d211da9839bbbae663e6ce11231b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8759320&rfr_iscdi=true