Loading…
Scalable binary sorting architecture based on rank ordering with linear area-time complexity
A new modular architecture is presented for the realization of high-speed binary sorting engines, based on efficient rank ordering. Capacitive Threshold Logic (CTL) gates are utilized for the implementation of the multi-input programmable majority (voting) functions required in the architecture. The...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new modular architecture is presented for the realization of high-speed binary sorting engines, based on efficient rank ordering. Capacitive Threshold Logic (CTL) gates are utilized for the implementation of the multi-input programmable majority (voting) functions required in the architecture. The overall complexity of the proposed bit-serial architecture increases linearly with the number of input vectors to be sorted (window size=m) and with the bit-length of the input vectors (word size=n), and the sorter architecture can be easily expanded to accommodate large vector sets. It is demonstrated that the proposed sorting engine is capable of producing a fully sorted output vector set in (m+n-1) clock cycles, i.e., in linear time. |
---|---|
ISSN: | 1063-0988 |
DOI: | 10.1109/ASIC.2000.880766 |