Loading…
Constrained Kalman Filter for Adaptive Prediction in Minidrone Flight
The minidrone Parrot Mambo® is a promising robotic platform for education control purposes. An important limitation is that its SDK provides sensor data with a maximum nominal frequency of just 2 Hz, creating objective difficulties for feedback control. This paper proposes an observer capable of gen...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The minidrone Parrot Mambo® is a promising robotic platform for education control purposes. An important limitation is that its SDK provides sensor data with a maximum nominal frequency of just 2 Hz, creating objective difficulties for feedback control. This paper proposes an observer capable of generating prediction on the data, which allows feeding the controller with a much faster rate than the one allowed by the slow sensor data rate. The predictions are generated by a linear model, whose parameters are identified on-line using a Constrained Kalman Filter. The strategy is successfully validated via extensive experiments with real drones performing altitude stabilisation and trajectory tracking tasks. In particular, the constrained model identification preserves a stable prediction (which is physically meaningful), and hence safe flight, even in the presence of large disturbances. |
---|---|
ISSN: | 2642-2077 |
DOI: | 10.1109/I2MTC.2019.8827131 |