Loading…

Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning

In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2020-04, Vol.16 (4), p.2640-2650
Main Authors: Han, Yang, Zhang, Cai-Jun, Wang, Lu, Zhang, Yan-Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213
cites cdi_FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213
container_end_page 2650
container_issue 4
container_start_page 2640
container_title IEEE transactions on industrial informatics
container_volume 16
creator Han, Yang
Zhang, Cai-Jun
Wang, Lu
Zhang, Yan-Chao
description In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In the framework of the Internet of Things, a bidirectional recursive multiscale convolution depth neural network algorithm can take into account the characteristics of frequency domain structure and time domain dynamic sequence. It is applied to the deep-learning of the converter mouth flame spectrum information. The dynamic prediction model of carbon content and temperature value in molten steel at the later stage of steelmaking is constructed. The static control system and dynamic prediction model of automatic steelmaking are intelligently fused to realize one-key steelmaking control. The results show that the average hit rate of carbon content, temperature, and carbon temperature at the end of steelmaking is 94.78%, 98.41% and 93.43%, which makes the end-point control of steelmaking more stable and the blowing rate less than 1%.
doi_str_mv 10.1109/TII.2019.2948100
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8873680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8873680</ieee_id><sourcerecordid>2345522734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc-dL0m7NUabTwkRhE48hbV5nZ9vMJBX235sx8fTyyPf7PfgIuWYwYQzk3booJhyYnHCZ5gzghIyYTFkCkMFpfGcZSwQHcU4uvN8CiBkIOSJD0ZvBB9folhZ2TWvraNEHbNtmg32gq4DYdvqr6Tf0owmfdG77H3QBHX2xQ9wXre6QrnZYBTd0MRsbOh0a29M3Zyv0Hg0t9_QBcUeXqF0fqy7JWa1bj1d_c0zeF4_r-XOyfH0q5vfLpOKShaSUOdalSVMuS6glZyxHjcxIIaYsix88AgbSmpeVQBQRMmCAQ8UNRlyMye2xd-fs94A-qK0dXB9PKi7SLON8JtJIwZGqnPXeYa12rum02ysG6iBXRbnqIFf9yY2Rm2OkQcR_PM9nYpqD-AWJMnb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345522734</pqid></control><display><type>article</type><title>Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Han, Yang ; Zhang, Cai-Jun ; Wang, Lu ; Zhang, Yan-Chao</creator><creatorcontrib>Han, Yang ; Zhang, Cai-Jun ; Wang, Lu ; Zhang, Yan-Chao</creatorcontrib><description>In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In the framework of the Internet of Things, a bidirectional recursive multiscale convolution depth neural network algorithm can take into account the characteristics of frequency domain structure and time domain dynamic sequence. It is applied to the deep-learning of the converter mouth flame spectrum information. The dynamic prediction model of carbon content and temperature value in molten steel at the later stage of steelmaking is constructed. The static control system and dynamic prediction model of automatic steelmaking are intelligently fused to realize one-key steelmaking control. The results show that the average hit rate of carbon content, temperature, and carbon temperature at the end of steelmaking is 94.78%, 98.41% and 93.43%, which makes the end-point control of steelmaking more stable and the blowing rate less than 1%.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2948100</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Automatic control ; Bidirectional recursive ; Blowing rate ; Carbon ; Carbon content ; Chemical reactions ; Convolution ; Deep learning ; Fires ; Industrial applications ; Internet of Things ; Internet of Things (IoT) ; Mouth ; multiscale convolution ; Neural networks ; Organic chemistry ; Process control ; Smelting ; Steel ; Steel construction ; Steel converters ; Steel making ; steelmaking end-point</subject><ispartof>IEEE transactions on industrial informatics, 2020-04, Vol.16 (4), p.2640-2650</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213</citedby><cites>FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213</cites><orcidid>0000-0002-2068-7503 ; 0000-0002-3501-1610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8873680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Han, Yang</creatorcontrib><creatorcontrib>Zhang, Cai-Jun</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zhang, Yan-Chao</creatorcontrib><title>Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In the framework of the Internet of Things, a bidirectional recursive multiscale convolution depth neural network algorithm can take into account the characteristics of frequency domain structure and time domain dynamic sequence. It is applied to the deep-learning of the converter mouth flame spectrum information. The dynamic prediction model of carbon content and temperature value in molten steel at the later stage of steelmaking is constructed. The static control system and dynamic prediction model of automatic steelmaking are intelligently fused to realize one-key steelmaking control. The results show that the average hit rate of carbon content, temperature, and carbon temperature at the end of steelmaking is 94.78%, 98.41% and 93.43%, which makes the end-point control of steelmaking more stable and the blowing rate less than 1%.</description><subject>Algorithms</subject><subject>Automatic control</subject><subject>Bidirectional recursive</subject><subject>Blowing rate</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Chemical reactions</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Fires</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Mouth</subject><subject>multiscale convolution</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Process control</subject><subject>Smelting</subject><subject>Steel</subject><subject>Steel construction</subject><subject>Steel converters</subject><subject>Steel making</subject><subject>steelmaking end-point</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc-dL0m7NUabTwkRhE48hbV5nZ9vMJBX235sx8fTyyPf7PfgIuWYwYQzk3booJhyYnHCZ5gzghIyYTFkCkMFpfGcZSwQHcU4uvN8CiBkIOSJD0ZvBB9folhZ2TWvraNEHbNtmg32gq4DYdvqr6Tf0owmfdG77H3QBHX2xQ9wXre6QrnZYBTd0MRsbOh0a29M3Zyv0Hg0t9_QBcUeXqF0fqy7JWa1bj1d_c0zeF4_r-XOyfH0q5vfLpOKShaSUOdalSVMuS6glZyxHjcxIIaYsix88AgbSmpeVQBQRMmCAQ8UNRlyMye2xd-fs94A-qK0dXB9PKi7SLON8JtJIwZGqnPXeYa12rum02ysG6iBXRbnqIFf9yY2Rm2OkQcR_PM9nYpqD-AWJMnb4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Han, Yang</creator><creator>Zhang, Cai-Jun</creator><creator>Wang, Lu</creator><creator>Zhang, Yan-Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2068-7503</orcidid><orcidid>https://orcid.org/0000-0002-3501-1610</orcidid></search><sort><creationdate>20200401</creationdate><title>Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning</title><author>Han, Yang ; Zhang, Cai-Jun ; Wang, Lu ; Zhang, Yan-Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automatic control</topic><topic>Bidirectional recursive</topic><topic>Blowing rate</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Chemical reactions</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Fires</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Mouth</topic><topic>multiscale convolution</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Process control</topic><topic>Smelting</topic><topic>Steel</topic><topic>Steel construction</topic><topic>Steel converters</topic><topic>Steel making</topic><topic>steelmaking end-point</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Yang</creatorcontrib><creatorcontrib>Zhang, Cai-Jun</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zhang, Yan-Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yang</au><au>Zhang, Cai-Jun</au><au>Wang, Lu</au><au>Zhang, Yan-Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>2640</spage><epage>2650</epage><pages>2640-2650</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In the framework of the Internet of Things, a bidirectional recursive multiscale convolution depth neural network algorithm can take into account the characteristics of frequency domain structure and time domain dynamic sequence. It is applied to the deep-learning of the converter mouth flame spectrum information. The dynamic prediction model of carbon content and temperature value in molten steel at the later stage of steelmaking is constructed. The static control system and dynamic prediction model of automatic steelmaking are intelligently fused to realize one-key steelmaking control. The results show that the average hit rate of carbon content, temperature, and carbon temperature at the end of steelmaking is 94.78%, 98.41% and 93.43%, which makes the end-point control of steelmaking more stable and the blowing rate less than 1%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2948100</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2068-7503</orcidid><orcidid>https://orcid.org/0000-0002-3501-1610</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2020-04, Vol.16 (4), p.2640-2650
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_8873680
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Automatic control
Bidirectional recursive
Blowing rate
Carbon
Carbon content
Chemical reactions
Convolution
Deep learning
Fires
Industrial applications
Internet of Things
Internet of Things (IoT)
Mouth
multiscale convolution
Neural networks
Organic chemistry
Process control
Smelting
Steel
Steel construction
Steel converters
Steel making
steelmaking end-point
title Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Industrial%20IoT%20for%20Intelligent%20Steelmaking%20With%20Converter%20Mouth%20Flame%20Spectrum%20Information%20Processed%20by%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Han,%20Yang&rft.date=2020-04-01&rft.volume=16&rft.issue=4&rft.spage=2640&rft.epage=2650&rft.pages=2640-2650&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2948100&rft_dat=%3Cproquest_ieee_%3E2345522734%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2345522734&rft_id=info:pmid/&rft_ieee_id=8873680&rfr_iscdi=true