Loading…
Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning
In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In...
Saved in:
Published in: | IEEE transactions on industrial informatics 2020-04, Vol.16 (4), p.2640-2650 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213 |
container_end_page | 2650 |
container_issue | 4 |
container_start_page | 2640 |
container_title | IEEE transactions on industrial informatics |
container_volume | 16 |
creator | Han, Yang Zhang, Cai-Jun Wang, Lu Zhang, Yan-Chao |
description | In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In the framework of the Internet of Things, a bidirectional recursive multiscale convolution depth neural network algorithm can take into account the characteristics of frequency domain structure and time domain dynamic sequence. It is applied to the deep-learning of the converter mouth flame spectrum information. The dynamic prediction model of carbon content and temperature value in molten steel at the later stage of steelmaking is constructed. The static control system and dynamic prediction model of automatic steelmaking are intelligently fused to realize one-key steelmaking control. The results show that the average hit rate of carbon content, temperature, and carbon temperature at the end of steelmaking is 94.78%, 98.41% and 93.43%, which makes the end-point control of steelmaking more stable and the blowing rate less than 1%. |
doi_str_mv | 10.1109/TII.2019.2948100 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8873680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8873680</ieee_id><sourcerecordid>2345522734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc-dL0m7NUabTwkRhE48hbV5nZ9vMJBX235sx8fTyyPf7PfgIuWYwYQzk3booJhyYnHCZ5gzghIyYTFkCkMFpfGcZSwQHcU4uvN8CiBkIOSJD0ZvBB9folhZ2TWvraNEHbNtmg32gq4DYdvqr6Tf0owmfdG77H3QBHX2xQ9wXre6QrnZYBTd0MRsbOh0a29M3Zyv0Hg0t9_QBcUeXqF0fqy7JWa1bj1d_c0zeF4_r-XOyfH0q5vfLpOKShaSUOdalSVMuS6glZyxHjcxIIaYsix88AgbSmpeVQBQRMmCAQ8UNRlyMye2xd-fs94A-qK0dXB9PKi7SLON8JtJIwZGqnPXeYa12rum02ysG6iBXRbnqIFf9yY2Rm2OkQcR_PM9nYpqD-AWJMnb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345522734</pqid></control><display><type>article</type><title>Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Han, Yang ; Zhang, Cai-Jun ; Wang, Lu ; Zhang, Yan-Chao</creator><creatorcontrib>Han, Yang ; Zhang, Cai-Jun ; Wang, Lu ; Zhang, Yan-Chao</creatorcontrib><description>In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In the framework of the Internet of Things, a bidirectional recursive multiscale convolution depth neural network algorithm can take into account the characteristics of frequency domain structure and time domain dynamic sequence. It is applied to the deep-learning of the converter mouth flame spectrum information. The dynamic prediction model of carbon content and temperature value in molten steel at the later stage of steelmaking is constructed. The static control system and dynamic prediction model of automatic steelmaking are intelligently fused to realize one-key steelmaking control. The results show that the average hit rate of carbon content, temperature, and carbon temperature at the end of steelmaking is 94.78%, 98.41% and 93.43%, which makes the end-point control of steelmaking more stable and the blowing rate less than 1%.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2948100</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Automatic control ; Bidirectional recursive ; Blowing rate ; Carbon ; Carbon content ; Chemical reactions ; Convolution ; Deep learning ; Fires ; Industrial applications ; Internet of Things ; Internet of Things (IoT) ; Mouth ; multiscale convolution ; Neural networks ; Organic chemistry ; Process control ; Smelting ; Steel ; Steel construction ; Steel converters ; Steel making ; steelmaking end-point</subject><ispartof>IEEE transactions on industrial informatics, 2020-04, Vol.16 (4), p.2640-2650</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213</citedby><cites>FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213</cites><orcidid>0000-0002-2068-7503 ; 0000-0002-3501-1610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8873680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Han, Yang</creatorcontrib><creatorcontrib>Zhang, Cai-Jun</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zhang, Yan-Chao</creatorcontrib><title>Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In the framework of the Internet of Things, a bidirectional recursive multiscale convolution depth neural network algorithm can take into account the characteristics of frequency domain structure and time domain dynamic sequence. It is applied to the deep-learning of the converter mouth flame spectrum information. The dynamic prediction model of carbon content and temperature value in molten steel at the later stage of steelmaking is constructed. The static control system and dynamic prediction model of automatic steelmaking are intelligently fused to realize one-key steelmaking control. The results show that the average hit rate of carbon content, temperature, and carbon temperature at the end of steelmaking is 94.78%, 98.41% and 93.43%, which makes the end-point control of steelmaking more stable and the blowing rate less than 1%.</description><subject>Algorithms</subject><subject>Automatic control</subject><subject>Bidirectional recursive</subject><subject>Blowing rate</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Chemical reactions</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Fires</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Mouth</subject><subject>multiscale convolution</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Process control</subject><subject>Smelting</subject><subject>Steel</subject><subject>Steel construction</subject><subject>Steel converters</subject><subject>Steel making</subject><subject>steelmaking end-point</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc-dL0m7NUabTwkRhE48hbV5nZ9vMJBX235sx8fTyyPf7PfgIuWYwYQzk3booJhyYnHCZ5gzghIyYTFkCkMFpfGcZSwQHcU4uvN8CiBkIOSJD0ZvBB9folhZ2TWvraNEHbNtmg32gq4DYdvqr6Tf0owmfdG77H3QBHX2xQ9wXre6QrnZYBTd0MRsbOh0a29M3Zyv0Hg0t9_QBcUeXqF0fqy7JWa1bj1d_c0zeF4_r-XOyfH0q5vfLpOKShaSUOdalSVMuS6glZyxHjcxIIaYsix88AgbSmpeVQBQRMmCAQ8UNRlyMye2xd-fs94A-qK0dXB9PKi7SLON8JtJIwZGqnPXeYa12rum02ysG6iBXRbnqIFf9yY2Rm2OkQcR_PM9nYpqD-AWJMnb4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Han, Yang</creator><creator>Zhang, Cai-Jun</creator><creator>Wang, Lu</creator><creator>Zhang, Yan-Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2068-7503</orcidid><orcidid>https://orcid.org/0000-0002-3501-1610</orcidid></search><sort><creationdate>20200401</creationdate><title>Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning</title><author>Han, Yang ; Zhang, Cai-Jun ; Wang, Lu ; Zhang, Yan-Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automatic control</topic><topic>Bidirectional recursive</topic><topic>Blowing rate</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Chemical reactions</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Fires</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Mouth</topic><topic>multiscale convolution</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Process control</topic><topic>Smelting</topic><topic>Steel</topic><topic>Steel construction</topic><topic>Steel converters</topic><topic>Steel making</topic><topic>steelmaking end-point</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Yang</creatorcontrib><creatorcontrib>Zhang, Cai-Jun</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zhang, Yan-Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yang</au><au>Zhang, Cai-Jun</au><au>Wang, Lu</au><au>Zhang, Yan-Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>2640</spage><epage>2650</epage><pages>2640-2650</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this article, based on the fact that the converter mouth flame is the comprehensive external appearance of the physical and chemical reactions in the converter during the steelmaking process, the continuous spectrum information of the converter mouth flame was obtained by USB4000 spectrometer. In the framework of the Internet of Things, a bidirectional recursive multiscale convolution depth neural network algorithm can take into account the characteristics of frequency domain structure and time domain dynamic sequence. It is applied to the deep-learning of the converter mouth flame spectrum information. The dynamic prediction model of carbon content and temperature value in molten steel at the later stage of steelmaking is constructed. The static control system and dynamic prediction model of automatic steelmaking are intelligently fused to realize one-key steelmaking control. The results show that the average hit rate of carbon content, temperature, and carbon temperature at the end of steelmaking is 94.78%, 98.41% and 93.43%, which makes the end-point control of steelmaking more stable and the blowing rate less than 1%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2948100</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2068-7503</orcidid><orcidid>https://orcid.org/0000-0002-3501-1610</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2020-04, Vol.16 (4), p.2640-2650 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_8873680 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Automatic control Bidirectional recursive Blowing rate Carbon Carbon content Chemical reactions Convolution Deep learning Fires Industrial applications Internet of Things Internet of Things (IoT) Mouth multiscale convolution Neural networks Organic chemistry Process control Smelting Steel Steel construction Steel converters Steel making steelmaking end-point |
title | Industrial IoT for Intelligent Steelmaking With Converter Mouth Flame Spectrum Information Processed by Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Industrial%20IoT%20for%20Intelligent%20Steelmaking%20With%20Converter%20Mouth%20Flame%20Spectrum%20Information%20Processed%20by%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Han,%20Yang&rft.date=2020-04-01&rft.volume=16&rft.issue=4&rft.spage=2640&rft.epage=2650&rft.pages=2640-2650&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2948100&rft_dat=%3Cproquest_ieee_%3E2345522734%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-b98efbd4429b0f92118eae1d933615bd4298ed04f2bc3ee3b0fd0d020c2de9213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2345522734&rft_id=info:pmid/&rft_ieee_id=8873680&rfr_iscdi=true |