Loading…
Machine Learning-Based in-Band OSNR Estimation From Optical Spectra
Measuring the optical signal to noise ratio (OSNR) at certain network points is essential for failure handling, for single connection but also global network optimization. Estimating OSNR is inherently difficult in dense wavelength routed networks, where connections accumulate noise over different p...
Saved in:
Published in: | IEEE photonics technology letters 2019-12, Vol.31 (24), p.1929-1932 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Measuring the optical signal to noise ratio (OSNR) at certain network points is essential for failure handling, for single connection but also global network optimization. Estimating OSNR is inherently difficult in dense wavelength routed networks, where connections accumulate noise over different paths and tight filters do not allow the observation of the noise level at signal sides. We propose an in-band OSNR estimation process, which relies on a machine learning (ML) method, in particular on Gaussian process (GP) or support vector machine (SVM) regression. We acquired high-resolution optical spectra, through an experimental setup, using a Brillouin optical spectrum analyzer (BOSA), on which we applied our method and obtained excellent estimation accuracy. We also verified the accuracy of this approach for various resolution scenarios. To further validate it, we generated spectral data for different configurations and resolutions through simulations. This second validation confirmed the estimation quality of the proposed approach. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2019.2950058 |