Loading…
Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique
Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different a...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c255t-f10436303b7b29d3e10b86c60732820f554c311d058b76ffdc966b93ea74091b3 |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Izci, Elif Ozdemir, Mehmet Akif Degirmenci, Murside Akan, Aydin |
description | Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different arrhythmia types. The performance of the proposed architecture is tested on Electrocardiogram (ECG) signals that are taken from MIT-BIH arrhythmia benchmark database. ECG signals was segmented into heartbeats and each of the heartbeats was converted into 2-D grayscale images as an input data for CNN structure. The accuracy of the proposed architecture was found as 97.42% on the training results revealed that the proposed 2-D CNN architecture with transformed 2-D ECG images can achieve highest accuracy without any preprocessing and feature extraction and feature selection stages for ECG signals. |
doi_str_mv | 10.1109/TIPTEKNO.2019.8895011 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8895011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8895011</ieee_id><sourcerecordid>8895011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-f10436303b7b29d3e10b86c60732820f554c311d058b76ffdc966b93ea74091b3</originalsourceid><addsrcrecordid>eNotkM1Kw0AURkdBsNQ-gQjzAqn3zmT-liWttVhsF-m6zEwmzYhJ6yQu8vYqdvVx4HAWHyFPCHNEMM_lZl-u3t53cwZo5lobAYg3ZGaURsU0spyBuSUTJrXKlNL8nsz6_gMAmEDODJ-QfWFTFa2ni5SacWjaaOkyDMEP8dzROp1bypZ0VazpprWn0FM30kMfu9OvFS50G2zq_qgMvuni13d4IHe1_ezD7LpTcnhZlcVrtt2tN8Vim3kmxJDVCDmXHLhTjpmKBwSnpZegONMMaiFyzxErENopWdeVN1I6w4NVORh0fEoe_7sxhHC8pNjaNB6vH_AfOEtOuQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique</title><source>IEEE Xplore All Conference Series</source><creator>Izci, Elif ; Ozdemir, Mehmet Akif ; Degirmenci, Murside ; Akan, Aydin</creator><creatorcontrib>Izci, Elif ; Ozdemir, Mehmet Akif ; Degirmenci, Murside ; Akan, Aydin</creatorcontrib><description>Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different arrhythmia types. The performance of the proposed architecture is tested on Electrocardiogram (ECG) signals that are taken from MIT-BIH arrhythmia benchmark database. ECG signals was segmented into heartbeats and each of the heartbeats was converted into 2-D grayscale images as an input data for CNN structure. The accuracy of the proposed architecture was found as 97.42% on the training results revealed that the proposed 2-D CNN architecture with transformed 2-D ECG images can achieve highest accuracy without any preprocessing and feature extraction and feature selection stages for ECG signals.</description><identifier>EISSN: 2687-7783</identifier><identifier>EISBN: 9781728124209</identifier><identifier>EISBN: 1728124204</identifier><identifier>DOI: 10.1109/TIPTEKNO.2019.8895011</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrhythmia Detection ; Convolutional Neural Networks ; Deep Learning ; ECG Images ; Electrocardiogram</subject><ispartof>2019 Medical Technologies Congress (TIPTEKNO), 2019, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-f10436303b7b29d3e10b86c60732820f554c311d058b76ffdc966b93ea74091b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8895011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8895011$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Izci, Elif</creatorcontrib><creatorcontrib>Ozdemir, Mehmet Akif</creatorcontrib><creatorcontrib>Degirmenci, Murside</creatorcontrib><creatorcontrib>Akan, Aydin</creatorcontrib><title>Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique</title><title>2019 Medical Technologies Congress (TIPTEKNO)</title><addtitle>TIPTEKNO</addtitle><description>Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different arrhythmia types. The performance of the proposed architecture is tested on Electrocardiogram (ECG) signals that are taken from MIT-BIH arrhythmia benchmark database. ECG signals was segmented into heartbeats and each of the heartbeats was converted into 2-D grayscale images as an input data for CNN structure. The accuracy of the proposed architecture was found as 97.42% on the training results revealed that the proposed 2-D CNN architecture with transformed 2-D ECG images can achieve highest accuracy without any preprocessing and feature extraction and feature selection stages for ECG signals.</description><subject>Arrhythmia Detection</subject><subject>Convolutional Neural Networks</subject><subject>Deep Learning</subject><subject>ECG Images</subject><subject>Electrocardiogram</subject><issn>2687-7783</issn><isbn>9781728124209</isbn><isbn>1728124204</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1Kw0AURkdBsNQ-gQjzAqn3zmT-liWttVhsF-m6zEwmzYhJ6yQu8vYqdvVx4HAWHyFPCHNEMM_lZl-u3t53cwZo5lobAYg3ZGaURsU0spyBuSUTJrXKlNL8nsz6_gMAmEDODJ-QfWFTFa2ni5SacWjaaOkyDMEP8dzROp1bypZ0VazpprWn0FM30kMfu9OvFS50G2zq_qgMvuni13d4IHe1_ezD7LpTcnhZlcVrtt2tN8Vim3kmxJDVCDmXHLhTjpmKBwSnpZegONMMaiFyzxErENopWdeVN1I6w4NVORh0fEoe_7sxhHC8pNjaNB6vH_AfOEtOuQ</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Izci, Elif</creator><creator>Ozdemir, Mehmet Akif</creator><creator>Degirmenci, Murside</creator><creator>Akan, Aydin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201910</creationdate><title>Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique</title><author>Izci, Elif ; Ozdemir, Mehmet Akif ; Degirmenci, Murside ; Akan, Aydin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-f10436303b7b29d3e10b86c60732820f554c311d058b76ffdc966b93ea74091b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrhythmia Detection</topic><topic>Convolutional Neural Networks</topic><topic>Deep Learning</topic><topic>ECG Images</topic><topic>Electrocardiogram</topic><toplevel>online_resources</toplevel><creatorcontrib>Izci, Elif</creatorcontrib><creatorcontrib>Ozdemir, Mehmet Akif</creatorcontrib><creatorcontrib>Degirmenci, Murside</creatorcontrib><creatorcontrib>Akan, Aydin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Izci, Elif</au><au>Ozdemir, Mehmet Akif</au><au>Degirmenci, Murside</au><au>Akan, Aydin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique</atitle><btitle>2019 Medical Technologies Congress (TIPTEKNO)</btitle><stitle>TIPTEKNO</stitle><date>2019-10</date><risdate>2019</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2687-7783</eissn><eisbn>9781728124209</eisbn><eisbn>1728124204</eisbn><abstract>Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different arrhythmia types. The performance of the proposed architecture is tested on Electrocardiogram (ECG) signals that are taken from MIT-BIH arrhythmia benchmark database. ECG signals was segmented into heartbeats and each of the heartbeats was converted into 2-D grayscale images as an input data for CNN structure. The accuracy of the proposed architecture was found as 97.42% on the training results revealed that the proposed 2-D CNN architecture with transformed 2-D ECG images can achieve highest accuracy without any preprocessing and feature extraction and feature selection stages for ECG signals.</abstract><pub>IEEE</pub><doi>10.1109/TIPTEKNO.2019.8895011</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2687-7783 |
ispartof | 2019 Medical Technologies Congress (TIPTEKNO), 2019, p.1-4 |
issn | 2687-7783 |
language | eng |
recordid | cdi_ieee_primary_8895011 |
source | IEEE Xplore All Conference Series |
subjects | Arrhythmia Detection Convolutional Neural Networks Deep Learning ECG Images Electrocardiogram |
title | Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cardiac%20Arrhythmia%20Detection%20from%202D%20ECG%20Images%20by%20Using%20Deep%20Learning%20Technique&rft.btitle=2019%20Medical%20Technologies%20Congress%20(TIPTEKNO)&rft.au=Izci,%20Elif&rft.date=2019-10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2687-7783&rft_id=info:doi/10.1109/TIPTEKNO.2019.8895011&rft.eisbn=9781728124209&rft.eisbn_list=1728124204&rft_dat=%3Cieee_CHZPO%3E8895011%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-f10436303b7b29d3e10b86c60732820f554c311d058b76ffdc966b93ea74091b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8895011&rfr_iscdi=true |