Loading…

Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique

Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different a...

Full description

Saved in:
Bibliographic Details
Main Authors: Izci, Elif, Ozdemir, Mehmet Akif, Degirmenci, Murside, Akan, Aydin
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c255t-f10436303b7b29d3e10b86c60732820f554c311d058b76ffdc966b93ea74091b3
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Izci, Elif
Ozdemir, Mehmet Akif
Degirmenci, Murside
Akan, Aydin
description Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different arrhythmia types. The performance of the proposed architecture is tested on Electrocardiogram (ECG) signals that are taken from MIT-BIH arrhythmia benchmark database. ECG signals was segmented into heartbeats and each of the heartbeats was converted into 2-D grayscale images as an input data for CNN structure. The accuracy of the proposed architecture was found as 97.42% on the training results revealed that the proposed 2-D CNN architecture with transformed 2-D ECG images can achieve highest accuracy without any preprocessing and feature extraction and feature selection stages for ECG signals.
doi_str_mv 10.1109/TIPTEKNO.2019.8895011
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8895011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8895011</ieee_id><sourcerecordid>8895011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-f10436303b7b29d3e10b86c60732820f554c311d058b76ffdc966b93ea74091b3</originalsourceid><addsrcrecordid>eNotkM1Kw0AURkdBsNQ-gQjzAqn3zmT-liWttVhsF-m6zEwmzYhJ6yQu8vYqdvVx4HAWHyFPCHNEMM_lZl-u3t53cwZo5lobAYg3ZGaURsU0spyBuSUTJrXKlNL8nsz6_gMAmEDODJ-QfWFTFa2ni5SacWjaaOkyDMEP8dzROp1bypZ0VazpprWn0FM30kMfu9OvFS50G2zq_qgMvuni13d4IHe1_ezD7LpTcnhZlcVrtt2tN8Vim3kmxJDVCDmXHLhTjpmKBwSnpZegONMMaiFyzxErENopWdeVN1I6w4NVORh0fEoe_7sxhHC8pNjaNB6vH_AfOEtOuQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique</title><source>IEEE Xplore All Conference Series</source><creator>Izci, Elif ; Ozdemir, Mehmet Akif ; Degirmenci, Murside ; Akan, Aydin</creator><creatorcontrib>Izci, Elif ; Ozdemir, Mehmet Akif ; Degirmenci, Murside ; Akan, Aydin</creatorcontrib><description>Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different arrhythmia types. The performance of the proposed architecture is tested on Electrocardiogram (ECG) signals that are taken from MIT-BIH arrhythmia benchmark database. ECG signals was segmented into heartbeats and each of the heartbeats was converted into 2-D grayscale images as an input data for CNN structure. The accuracy of the proposed architecture was found as 97.42% on the training results revealed that the proposed 2-D CNN architecture with transformed 2-D ECG images can achieve highest accuracy without any preprocessing and feature extraction and feature selection stages for ECG signals.</description><identifier>EISSN: 2687-7783</identifier><identifier>EISBN: 9781728124209</identifier><identifier>EISBN: 1728124204</identifier><identifier>DOI: 10.1109/TIPTEKNO.2019.8895011</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrhythmia Detection ; Convolutional Neural Networks ; Deep Learning ; ECG Images ; Electrocardiogram</subject><ispartof>2019 Medical Technologies Congress (TIPTEKNO), 2019, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-f10436303b7b29d3e10b86c60732820f554c311d058b76ffdc966b93ea74091b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8895011$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8895011$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Izci, Elif</creatorcontrib><creatorcontrib>Ozdemir, Mehmet Akif</creatorcontrib><creatorcontrib>Degirmenci, Murside</creatorcontrib><creatorcontrib>Akan, Aydin</creatorcontrib><title>Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique</title><title>2019 Medical Technologies Congress (TIPTEKNO)</title><addtitle>TIPTEKNO</addtitle><description>Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different arrhythmia types. The performance of the proposed architecture is tested on Electrocardiogram (ECG) signals that are taken from MIT-BIH arrhythmia benchmark database. ECG signals was segmented into heartbeats and each of the heartbeats was converted into 2-D grayscale images as an input data for CNN structure. The accuracy of the proposed architecture was found as 97.42% on the training results revealed that the proposed 2-D CNN architecture with transformed 2-D ECG images can achieve highest accuracy without any preprocessing and feature extraction and feature selection stages for ECG signals.</description><subject>Arrhythmia Detection</subject><subject>Convolutional Neural Networks</subject><subject>Deep Learning</subject><subject>ECG Images</subject><subject>Electrocardiogram</subject><issn>2687-7783</issn><isbn>9781728124209</isbn><isbn>1728124204</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1Kw0AURkdBsNQ-gQjzAqn3zmT-liWttVhsF-m6zEwmzYhJ6yQu8vYqdvVx4HAWHyFPCHNEMM_lZl-u3t53cwZo5lobAYg3ZGaURsU0spyBuSUTJrXKlNL8nsz6_gMAmEDODJ-QfWFTFa2ni5SacWjaaOkyDMEP8dzROp1bypZ0VazpprWn0FM30kMfu9OvFS50G2zq_qgMvuni13d4IHe1_ezD7LpTcnhZlcVrtt2tN8Vim3kmxJDVCDmXHLhTjpmKBwSnpZegONMMaiFyzxErENopWdeVN1I6w4NVORh0fEoe_7sxhHC8pNjaNB6vH_AfOEtOuQ</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Izci, Elif</creator><creator>Ozdemir, Mehmet Akif</creator><creator>Degirmenci, Murside</creator><creator>Akan, Aydin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201910</creationdate><title>Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique</title><author>Izci, Elif ; Ozdemir, Mehmet Akif ; Degirmenci, Murside ; Akan, Aydin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-f10436303b7b29d3e10b86c60732820f554c311d058b76ffdc966b93ea74091b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrhythmia Detection</topic><topic>Convolutional Neural Networks</topic><topic>Deep Learning</topic><topic>ECG Images</topic><topic>Electrocardiogram</topic><toplevel>online_resources</toplevel><creatorcontrib>Izci, Elif</creatorcontrib><creatorcontrib>Ozdemir, Mehmet Akif</creatorcontrib><creatorcontrib>Degirmenci, Murside</creatorcontrib><creatorcontrib>Akan, Aydin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Izci, Elif</au><au>Ozdemir, Mehmet Akif</au><au>Degirmenci, Murside</au><au>Akan, Aydin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique</atitle><btitle>2019 Medical Technologies Congress (TIPTEKNO)</btitle><stitle>TIPTEKNO</stitle><date>2019-10</date><risdate>2019</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2687-7783</eissn><eisbn>9781728124209</eisbn><eisbn>1728124204</eisbn><abstract>Arrhythmia is irregular changes of normal heart rhythm and effective manual identifying of them require a lot of time and depends on experience of clinicians. This paper proposes deep learning-based novel 2-D convolutional neural network (CNN) approach for accurate classification of five different arrhythmia types. The performance of the proposed architecture is tested on Electrocardiogram (ECG) signals that are taken from MIT-BIH arrhythmia benchmark database. ECG signals was segmented into heartbeats and each of the heartbeats was converted into 2-D grayscale images as an input data for CNN structure. The accuracy of the proposed architecture was found as 97.42% on the training results revealed that the proposed 2-D CNN architecture with transformed 2-D ECG images can achieve highest accuracy without any preprocessing and feature extraction and feature selection stages for ECG signals.</abstract><pub>IEEE</pub><doi>10.1109/TIPTEKNO.2019.8895011</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2687-7783
ispartof 2019 Medical Technologies Congress (TIPTEKNO), 2019, p.1-4
issn 2687-7783
language eng
recordid cdi_ieee_primary_8895011
source IEEE Xplore All Conference Series
subjects Arrhythmia Detection
Convolutional Neural Networks
Deep Learning
ECG Images
Electrocardiogram
title Cardiac Arrhythmia Detection from 2D ECG Images by Using Deep Learning Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cardiac%20Arrhythmia%20Detection%20from%202D%20ECG%20Images%20by%20Using%20Deep%20Learning%20Technique&rft.btitle=2019%20Medical%20Technologies%20Congress%20(TIPTEKNO)&rft.au=Izci,%20Elif&rft.date=2019-10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2687-7783&rft_id=info:doi/10.1109/TIPTEKNO.2019.8895011&rft.eisbn=9781728124209&rft.eisbn_list=1728124204&rft_dat=%3Cieee_CHZPO%3E8895011%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-f10436303b7b29d3e10b86c60732820f554c311d058b76ffdc966b93ea74091b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8895011&rfr_iscdi=true