Loading…

Sum-Rate Capacity for Symmetric Gaussian Multiple Access Channels With Feedback

The feedback sum-rate capacity is established for the symmetric J -user Gaussian multiple-access channel (GMAC). The main contribution is a converse bound that combines the dependence-balance argument of Hekstra and Willems (1989) with a variant of the factorization of a convex envelope of Geng and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2020-05, Vol.66 (5), p.2860-2871
Main Authors: Sula, Erixhen, Gastpar, Michael, Kramer, Gerhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The feedback sum-rate capacity is established for the symmetric J -user Gaussian multiple-access channel (GMAC). The main contribution is a converse bound that combines the dependence-balance argument of Hekstra and Willems (1989) with a variant of the factorization of a convex envelope of Geng and Nair (2014). The converse bound matches the achievable sum-rate of the Fourier-Modulated Estimate Correction strategy of Kramer (2002).
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2957808