Loading…
Machine Learning Model for Smart Contracts Security Analysis
In this paper, we introduce a machine learning predictive model that detects patterns of security vulnerabilities in smart contracts. We adapted two static code analyzers to label more than 1000 smart contracts that were verified and used on the Ethereum platform. Our model predicted a number of maj...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we introduce a machine learning predictive model that detects patterns of security vulnerabilities in smart contracts. We adapted two static code analyzers to label more than 1000 smart contracts that were verified and used on the Ethereum platform. Our model predicted a number of major software vulnerabilities with the average accuracy of 95 percent. The model currently supports smart contracts developed in Solidity, however, the approach described in this paper can be applied to other languages and blockchain platforms. |
---|---|
ISSN: | 2643-4202 |
DOI: | 10.1109/PST47121.2019.8949045 |