Loading…
A Probabilistic Framework for Imitating Human Race Driver Behavior
Understanding and modeling human driver behavior is crucial for advanced vehicle development. However, unique driving styles, inconsistent behavior, and complex decision processes render it a challenging task, and existing approaches often lack variability or robustness. To approach this problem, we...
Saved in:
Published in: | IEEE robotics and automation letters 2020-04, Vol.5 (2), p.2085-2092 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding and modeling human driver behavior is crucial for advanced vehicle development. However, unique driving styles, inconsistent behavior, and complex decision processes render it a challenging task, and existing approaches often lack variability or robustness. To approach this problem, we propose Probabilistic Modeling of Driver behavior (ProMoD), a modular framework which splits the task of driver behavior modeling into multiple modules. A global target trajectory distribution is learned with Probabilistic Movement Primitives, clothoids are utilized for local path generation, and the corresponding choice of actions is performed by a neural network. Experiments in a simulated car racing setting show considerable advantages in imitation accuracy and robustness compared to other imitation learning algorithms. The modular architecture of the proposed framework facilitates straightforward extensibility in driving line adaptation and sequencing of multiple movement primitives for future research. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2020.2970620 |