Loading…

UWB-Based Localization System Aided With Inertial Sensor for Underground Coal Mine Applications

Robotic mining equipment plays an increasingly important role in the coal mining industry. Due to the complexity of the confined underground environment, available localization methods are limited, and restrict the development of coal mine robots (CMRs). Ultra-wideband (UWB) is a promising positioni...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2020-06, Vol.20 (12), p.6652-6669
Main Authors: Li, Meng-Gang, Zhu, Hua, You, Shao-Ze, Tang, Chao-Quan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Robotic mining equipment plays an increasingly important role in the coal mining industry. Due to the complexity of the confined underground environment, available localization methods are limited, and restrict the development of coal mine robots (CMRs). Ultra-wideband (UWB) is a promising positioning sensor with high ranging accuracy. However, current applications about UWB positioning in coal mine focus mainly on position information, but rarely on orientation information. Positioning accuracy is often plagued by the loss of transmitted signals and multipath effects. In this paper, a pseudo-GPS positioning system in underground coal mine, composed by noisy UWB range measurements, is proposed to provide localization service for CMRs. An Error-State Kalman Filter (ESKF) is used for fusing measurements from the inertial measurement unit (IMU) and the established UWB positioning system. Then the complete six degree of freedom (6-DOF) state estimation can be realized. Meanwhile the biases of the IMU and the translation parameters of IMU w.r.t. UWB mobile node are also estimated online to adapt to long-term operation in harsh underground environments. In addition, an UWB anchor optimal deployment strategy is discussed to deploy UWB nodes appropriately in the laneway, and maintain realistic positioning accuracy for CMR in the meantime. A large number of field tests in different environments including the actual underground coal mine were conducted. The experimental results showed that our method could obtain the pose estimation performance close to the state-of-the-art lidar odometry approach that has been currently utilized in underground coal mine, providing robust and precise localization estimation for CMR applications.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2020.2976097