Loading…
Influence of Capacitive Coupling on High-Fidelity Non-Contact ECG Measurement
Non-contact electrocardiogram (ECG) measurement is an advanced sensing technique that uses capacitive electrodes to detect cardiac signals through non-conductive fabrics. However, the capacitive coupling is a significant factor that affects signal-to-noise ratio (SNR) of non-contact ECG, including s...
Saved in:
Published in: | IEEE sensors journal 2020-08, Vol.20 (16), p.9265-9273 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Non-contact electrocardiogram (ECG) measurement is an advanced sensing technique that uses capacitive electrodes to detect cardiac signals through non-conductive fabrics. However, the capacitive coupling is a significant factor that affects signal-to-noise ratio (SNR) of non-contact ECG, including skin-electrode active area, material, and thickness of the non-conductive fabric. This study aims to develop a high-fidelity non-contact ECG system to evaluate the influence of capacitive coupling on ECG measurement. In this study, a polymer foam with low surface resistance ( 0.05\Omega /inch 2 ) was designed for improving the capacitive-coupling interface between the curved body and electrode sensing surface. The system recorded excellent non-contact ECG of 29.8dB, and the accuracy of heart rate was 99.5% compared to wet-contact ECG measurement. The SNR exponentially attenuated with decreasing skin-electrode capacitance by the combined evidence of theoretical calculation and experimental results. The proposed system generates distinguishable ECG signals (SNR>0dB) at the skin-electrode capacitance above 85pF and maximum through-thickness of cotton-based cloth of 1.2mm. In conclusion, this study evaluated the influence of capacitive coupling on non-contact ECG measurements and established a lower bound of the coupling capacitance for satisfactory signal quality. Future studies may investigate whether the coupling capacitance can be further reduced. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2020.2986723 |