Loading…

Efficient Learning for Selecting Important Nodes in Random Network

In this article, we consider the problem of selecting important nodes in a random network, where the nodes connect to each other randomly with certain transition probabilities. The node importance is characterized by the stationary probabilities of the corresponding nodes in a Markov chain defined o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2021-03, Vol.66 (3), p.1321-1328
Main Authors: Li, Haidong, Xu, Xiaoyun, Peng, Yijie, Chen, Chun-Hung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, we consider the problem of selecting important nodes in a random network, where the nodes connect to each other randomly with certain transition probabilities. The node importance is characterized by the stationary probabilities of the corresponding nodes in a Markov chain defined over the network, as in Google's PageRank. Unlike a deterministic network, the transition probabilities in a random network are unknown but can be estimated by sampling. Under a Bayesian learning framework, we apply the first-order Taylor expansion and normal approximation to provide a computationally efficient posterior approximation of the stationary probabilities. In order to maximize the probability of correct selection, we propose a dynamic sampling procedure, which uses not only posterior means and variances of certain interaction parameters between different nodes, but also the sensitivities of the stationary probabilities with respect to each interaction parameter. Numerical experiment results demonstrate the superiority of the proposed sampling procedure.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2020.2989753