Loading…
A Hermitian Positive Definite neural network for micro-Doppler complex covariance processing
In its raw form, micro-Doppler radar data takes the form of a complex time-series, which can be seen as multiple realizations of a Gaussian process. As such, a complex covariance matrix constitutes a viable and synthetic representation of such data. In this paper, we introduce a neural network on He...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In its raw form, micro-Doppler radar data takes the form of a complex time-series, which can be seen as multiple realizations of a Gaussian process. As such, a complex covariance matrix constitutes a viable and synthetic representation of such data. In this paper, we introduce a neural network on Hermitian Positive Definite (HPD) matrices, that is complex-valued Symmetric Positive Definite (SPD) matrices, or complex covariance matrices. We validate this new architecture on synthetic data, comparing against previous similar methods. |
---|---|
ISSN: | 2640-7736 |
DOI: | 10.1109/RADAR41533.2019.171277 |