Loading…
FDTD Simulation of Dispersive Metasurfaces With Lorentzian Surface Susceptibilities
A Finite-Difference Time-Domain (FDTD) simulation of broadband electromagnetic metasurfaces based on direct incorporation of Generalized Sheet Transition Conditions (GSTCs) into a conventional Yee-cell region has been proposed for arbitrary wave excitations. This is achieved by inserting a zero thic...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.83027-83040 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Finite-Difference Time-Domain (FDTD) simulation of broadband electromagnetic metasurfaces based on direct incorporation of Generalized Sheet Transition Conditions (GSTCs) into a conventional Yee-cell region has been proposed for arbitrary wave excitations. This is achieved by inserting a zero thickness metasurface inside bulk nodes of the Yee-cell region, giving rise to three distinct cell configurations - Symmetric Cell (SC), Asymmetric Cell (AC) and Tight Asymmetric Cell (TAC). In addition, the metasurface is modelled using electric and magnetic surface susceptibilities exhibiting a broadband Lorentzian response. As a result, the proposed model guarantees a physical and causal response from the metasurface. Several full-wave results are shown and compared with analytical Fourier propagation methods showing excellent results for both 1D and 2D field simulations. It is found that the TAC provides the fastest convergence among the three methods with minimum error. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2992656 |