Loading…

FDTD Simulation of Dispersive Metasurfaces With Lorentzian Surface Susceptibilities

A Finite-Difference Time-Domain (FDTD) simulation of broadband electromagnetic metasurfaces based on direct incorporation of Generalized Sheet Transition Conditions (GSTCs) into a conventional Yee-cell region has been proposed for arbitrary wave excitations. This is achieved by inserting a zero thic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.83027-83040
Main Authors: Smy, Tom J., Stewart, Scott A., Rahmeier, Joao G. N., Gupta, Shulabh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Finite-Difference Time-Domain (FDTD) simulation of broadband electromagnetic metasurfaces based on direct incorporation of Generalized Sheet Transition Conditions (GSTCs) into a conventional Yee-cell region has been proposed for arbitrary wave excitations. This is achieved by inserting a zero thickness metasurface inside bulk nodes of the Yee-cell region, giving rise to three distinct cell configurations - Symmetric Cell (SC), Asymmetric Cell (AC) and Tight Asymmetric Cell (TAC). In addition, the metasurface is modelled using electric and magnetic surface susceptibilities exhibiting a broadband Lorentzian response. As a result, the proposed model guarantees a physical and causal response from the metasurface. Several full-wave results are shown and compared with analytical Fourier propagation methods showing excellent results for both 1D and 2D field simulations. It is found that the TAC provides the fastest convergence among the three methods with minimum error.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2992656