Loading…
Print Defect Mapping with Semantic Segmentation
Efficient automated print defect mapping is valuable to the printing industry since such defects directly influence customer-perceived printer quality and manually mapping them is cost-ineffective. Conventional methods consist of complicated and hand-crafted feature engineering techniques, usually t...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Efficient automated print defect mapping is valuable to the printing industry since such defects directly influence customer-perceived printer quality and manually mapping them is cost-ineffective. Conventional methods consist of complicated and hand-crafted feature engineering techniques, usually targeting only one type of defect. In this paper, we propose the first end-to-end framework to map print defects at pixel level, adopting an approach based on semantic segmentation. Our framework uses Convolutional Neural Networks, specifically DeepLab-v3+, and achieves promising results in the identification of defects in printed images. We use synthetic training data by simulating two types of print defects and a print-scan effect with image processing and computer graphic techniques. Compared with conventional methods, our framework is versatile, allowing two inference strategies, one being near real-time and providing coarser results, and the other focusing on offline processing with more fine-grained detection. Our model is evaluated on a dataset of real printed images. |
---|---|
ISSN: | 2642-9381 |
DOI: | 10.1109/WACV45572.2020.9093470 |