Loading…
An Unsupervised Method based on Support Vector Machines and Higher-Order Statistics for Mechanical Faults Detection
In this paper an unsupervised method to detect mechanical faults using support vector machines and higher-order statistics is proposed. The method extracts compact vector features – based on higher-order statistics – from vibration signals and uses the one-class support vector machine to build a clo...
Saved in:
Published in: | Revista IEEE América Latina 2020-06, Vol.18 (6), p.1093-1101 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | eng ; por |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper an unsupervised method to detect mechanical faults using support vector machines and higher-order statistics is proposed. The method extracts compact vector features – based on higher-order statistics – from vibration signals and uses the one-class support vector machine to build a closed region around the data from the health structure. The method was evaluated considering two cases: fault detection in a cantilever beam and in a three-phase induction motor. In both cases, the vibrations were collected by a 3 axis accelerometer sensor. The acquisition system was controlled by an open-source electronic prototyping ARDUINO® platform. After collecting the data, higher-order statistics-based features were extracted. These features were presented to the one-class support vector machine for fault detection. The proposed method was capable of identifying a closed region in a two-dimensional space so that events inside this region are signed as no faults and events outside this region are signed as faults. The method has two important characteristics: (i) it requires only healthy mechanical structures to be designed, and (ii) it operates in a low dimensional space (only two) constructed by the higher-order statistics features, which requires low computational cost in the operational phase. |
---|---|
ISSN: | 1548-0992 1548-0992 |
DOI: | 10.1109/TLA.2020.9099687 |