Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks
The features in facial images, which are utilized for a variety of technological applications, pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial images based on the principal components of adversarial segmented image blocks. Generative advers...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.103385-103394 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823 |
container_end_page | 103394 |
container_issue | |
container_start_page | 103385 |
container_title | IEEE access |
container_volume | 8 |
creator | Yang, Jingjing Liu, Jiaxing Wu, Jinzhao |
description | The features in facial images, which are utilized for a variety of technological applications, pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial images based on the principal components of adversarial segmented image blocks. Generative adversarial network parameters are compressed by segmenting the facial images into blocks and extracting the principal components of the segmented image. The generator and discriminator in the generative adversarial network then generate images similar to the original facial images; the facial images generated by the generator, as-driven by the target recognition network, markedly different from the original facial images. As the generator, discriminator, and target recognition network compete with each other, minor perturbation is added to the principal components of the facial images to protect the users' privacy and prevent distinct face-related features of the images from being easily extracted. Experimental results show that the proposed method outperforms other similar methods in terms of generated image quality, operation speed, and target recognition network accuracy. |
doi_str_mv | 10.1109/ACCESS.2020.2999449 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9106374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9106374</ieee_id><doaj_id>oai_doaj_org_article_3594701131fa411b981dbdd43f4a7ff5</doaj_id><sourcerecordid>2454428628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgUX-Bl4Dn1v3MZo9taLVQUKiel8lmtqS22bobhf57t6aIc5nhzXtvBl6W3VMyoZTox2lVzdfrCSOMTJjWWgh9kY0YLfSYS15c_puvs7sYtyRVmSCpRpldgG1hly_3sMH8NbTfYI-p-x5t3_oun0HEJk9D2nW2PSRu5fcH32HXx9y7fNp8Y4gQTi5r3OwTngSD32zn7Ue8za4c7CLenftN9r6Yv1XP49XL07KarsZWkLIfo3JCICrudEProtZAUWNJldREW4JKFpAel7qpnVQ0sRwAS5iSltiS8ZtsOfg2HrbmENo9hKPx0JpfwIeNgdC3doeGSy0UoZRTB4LSWpe0qZtGcCdAOSeT18PgdQj-8wtjb7b-K3TpfcOEFIKVBSsTiw8sG3yMAd3fVUrMKRwzhGNO4ZhzOEl1P6haRPxTaEoKrgT_AZ8yioU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454428628</pqid></control><display><type>article</type><title>Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks</title><source>IEEE Open Access Journals</source><creator>Yang, Jingjing ; Liu, Jiaxing ; Wu, Jinzhao</creator><creatorcontrib>Yang, Jingjing ; Liu, Jiaxing ; Wu, Jinzhao</creatorcontrib><description>The features in facial images, which are utilized for a variety of technological applications, pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial images based on the principal components of adversarial segmented image blocks. Generative adversarial network parameters are compressed by segmenting the facial images into blocks and extracting the principal components of the segmented image. The generator and discriminator in the generative adversarial network then generate images similar to the original facial images; the facial images generated by the generator, as-driven by the target recognition network, markedly different from the original facial images. As the generator, discriminator, and target recognition network compete with each other, minor perturbation is added to the principal components of the facial images to protect the users' privacy and prevent distinct face-related features of the images from being easily extracted. Experimental results show that the proposed method outperforms other similar methods in terms of generated image quality, operation speed, and target recognition network accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2999449</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>adversarial samples ; Face recognition ; Facial image privacy protection ; Feature extraction ; generative adversarial network ; Generators ; Image quality ; Image segmentation ; Linear algebra ; Object recognition ; Perturbation ; Perturbation methods ; Principal component analysis ; principal components ; Privacy ; Security management ; Target recognition</subject><ispartof>IEEE access, 2020, Vol.8, p.103385-103394</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823</citedby><cites>FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823</cites><orcidid>0000-0002-8284-6514 ; 0000-0002-2527-6017 ; 0000-0003-2751-2930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9106374$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Liu, Jiaxing</creatorcontrib><creatorcontrib>Wu, Jinzhao</creatorcontrib><title>Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks</title><title>IEEE access</title><addtitle>Access</addtitle><description>The features in facial images, which are utilized for a variety of technological applications, pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial images based on the principal components of adversarial segmented image blocks. Generative adversarial network parameters are compressed by segmenting the facial images into blocks and extracting the principal components of the segmented image. The generator and discriminator in the generative adversarial network then generate images similar to the original facial images; the facial images generated by the generator, as-driven by the target recognition network, markedly different from the original facial images. As the generator, discriminator, and target recognition network compete with each other, minor perturbation is added to the principal components of the facial images to protect the users' privacy and prevent distinct face-related features of the images from being easily extracted. Experimental results show that the proposed method outperforms other similar methods in terms of generated image quality, operation speed, and target recognition network accuracy.</description><subject>adversarial samples</subject><subject>Face recognition</subject><subject>Facial image privacy protection</subject><subject>Feature extraction</subject><subject>generative adversarial network</subject><subject>Generators</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Linear algebra</subject><subject>Object recognition</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Principal component analysis</subject><subject>principal components</subject><subject>Privacy</subject><subject>Security management</subject><subject>Target recognition</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgUX-Bl4Dn1v3MZo9taLVQUKiel8lmtqS22bobhf57t6aIc5nhzXtvBl6W3VMyoZTox2lVzdfrCSOMTJjWWgh9kY0YLfSYS15c_puvs7sYtyRVmSCpRpldgG1hly_3sMH8NbTfYI-p-x5t3_oun0HEJk9D2nW2PSRu5fcH32HXx9y7fNp8Y4gQTi5r3OwTngSD32zn7Ue8za4c7CLenftN9r6Yv1XP49XL07KarsZWkLIfo3JCICrudEProtZAUWNJldREW4JKFpAel7qpnVQ0sRwAS5iSltiS8ZtsOfg2HrbmENo9hKPx0JpfwIeNgdC3doeGSy0UoZRTB4LSWpe0qZtGcCdAOSeT18PgdQj-8wtjb7b-K3TpfcOEFIKVBSsTiw8sG3yMAd3fVUrMKRwzhGNO4ZhzOEl1P6haRPxTaEoKrgT_AZ8yioU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Jingjing</creator><creator>Liu, Jiaxing</creator><creator>Wu, Jinzhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8284-6514</orcidid><orcidid>https://orcid.org/0000-0002-2527-6017</orcidid><orcidid>https://orcid.org/0000-0003-2751-2930</orcidid></search><sort><creationdate>2020</creationdate><title>Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks</title><author>Yang, Jingjing ; Liu, Jiaxing ; Wu, Jinzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adversarial samples</topic><topic>Face recognition</topic><topic>Facial image privacy protection</topic><topic>Feature extraction</topic><topic>generative adversarial network</topic><topic>Generators</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Linear algebra</topic><topic>Object recognition</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Principal component analysis</topic><topic>principal components</topic><topic>Privacy</topic><topic>Security management</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Liu, Jiaxing</creatorcontrib><creatorcontrib>Wu, Jinzhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jingjing</au><au>Liu, Jiaxing</au><au>Wu, Jinzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>103385</spage><epage>103394</epage><pages>103385-103394</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The features in facial images, which are utilized for a variety of technological applications, pose a significant privacy concern for users. This paper proposes a method for protecting privacy in facial images based on the principal components of adversarial segmented image blocks. Generative adversarial network parameters are compressed by segmenting the facial images into blocks and extracting the principal components of the segmented image. The generator and discriminator in the generative adversarial network then generate images similar to the original facial images; the facial images generated by the generator, as-driven by the target recognition network, markedly different from the original facial images. As the generator, discriminator, and target recognition network compete with each other, minor perturbation is added to the principal components of the facial images to protect the users' privacy and prevent distinct face-related features of the images from being easily extracted. Experimental results show that the proposed method outperforms other similar methods in terms of generated image quality, operation speed, and target recognition network accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2999449</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8284-6514</orcidid><orcidid>https://orcid.org/0000-0002-2527-6017</orcidid><orcidid>https://orcid.org/0000-0003-2751-2930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.103385-103394 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9106374 |
source | IEEE Open Access Journals |
subjects | adversarial samples Face recognition Facial image privacy protection Feature extraction generative adversarial network Generators Image quality Image segmentation Linear algebra Object recognition Perturbation Perturbation methods Principal component analysis principal components Privacy Security management Target recognition |
title | Facial Image Privacy Protection Based on Principal Components of Adversarial Segmented Image Blocks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A26%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facial%20Image%20Privacy%20Protection%20Based%20on%20Principal%20Components%20of%20Adversarial%20Segmented%20Image%20Blocks&rft.jtitle=IEEE%20access&rft.au=Yang,%20Jingjing&rft.date=2020&rft.volume=8&rft.spage=103385&rft.epage=103394&rft.pages=103385-103394&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2999449&rft_dat=%3Cproquest_ieee_%3E2454428628%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-e7f44ee73f9d1b6b9a1e9e8175909c0e756a00859dbf571f9dfaa26a075c0c823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454428628&rft_id=info:pmid/&rft_ieee_id=9106374&rfr_iscdi=true |