Loading…

Real-Time Object Detection System with Multi-Path Neural Networks

Thanks to the recent advances in Deep Neural Networks (DNNs), DNN-based object detection systems become highly accurate and widely used in real-time environments such as autonomous vehicles, drones and security robots. Although the systems should detect objects within a certain time limit that can v...

Full description

Saved in:
Bibliographic Details
Main Authors: Heo, Seonyeong, Cho, Sungjun, Kim, Youngsok, Kim, Hanjun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thanks to the recent advances in Deep Neural Networks (DNNs), DNN-based object detection systems become highly accurate and widely used in real-time environments such as autonomous vehicles, drones and security robots. Although the systems should detect objects within a certain time limit that can vary depending on their execution environments such as vehicle speeds, existing systems blindly execute the entire long-latency DNNs without reflecting the time-varying time limits, and thus they cannot guarantee real-time constraints. This work proposes a novel real-time object detection system that employs multipath neural networks based on a new worst-case execution time (WCET) model for DNNs on a GPU. This work designs the WCET model for a single DNN layer analyzing processor and memory contention on GPUs, and extends the WCET model to the end-to-end networks. This work also designs the multipath networks with three new operators such as skip, switch, and dynamic generate proposals that dynamically change their execution paths and the number of target objects. Finally, this work proposes a path decision model that chooses the optimal execution path at run-time reflecting dynamically changing environments and time constraints. Our detailed evaluation using widely-used driving datasets shows that the proposed real-time object detection system performs as good as a baseline object detection system without violating the time-varying time limits. Moreover, the WCET model predicts the worst-case execution latency of convolutional and group normalization layers with only 27% and 81% errors on average, respectively.
ISSN:2642-7346
DOI:10.1109/RTAS48715.2020.000-8