Loading…
An Anomaly Comprehension Neural Network for Surveillance Videos on Terminal Devices
Anomaly comprehension in surveillance videos is more challenging than detection. This work introduces the design of a lightweight and fast anomaly comprehension neural network. For comprehension, a spatio-temporal LSTM model is developed based on the structured, tensorized time-series features extra...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Anomaly comprehension in surveillance videos is more challenging than detection. This work introduces the design of a lightweight and fast anomaly comprehension neural network. For comprehension, a spatio-temporal LSTM model is developed based on the structured, tensorized time-series features extracted from surveillance videos. Deep compression of network size is achieved by tensorization and quantization for the implementation on terminal devices. Experiments on large-scale video anomaly dataset UCF-Crime demonstrate that the proposed network can achieve an impressive inference speed of 266 FPS on a GTX-1080Ti GPU, which is 4.29 faster than ConvLSTM-based method; a 3.34% AUC improvement with 5.55% accuracy niche versus the 3D-CNN based approach; and at least 15k× parameter reduction and 228× storage compression over the RNN-based approaches. Moreover, the proposed framework has been realized on an ARM-core based IOT board with only 2.4W power consumption. |
---|---|
ISSN: | 1558-1101 |
DOI: | 10.23919/DATE48585.2020.9116533 |