Loading…

Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment

The nonlinear Fourier transform has the potential to overcome limits on performance and achievable data rates which arise in modern optical fiber communication systems when nonlinear interference is treated as noise. The periodic nonlinear Fourier transform (PNFT) has been much less investigated com...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2020-12, Vol.38 (23), p.6520-6528
Main Authors: Goossens, Jan-Willem, Hafermann, Hartmut, Jaouen, Yves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143
cites cdi_FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143
container_end_page 6528
container_issue 23
container_start_page 6520
container_title Journal of lightwave technology
container_volume 38
creator Goossens, Jan-Willem
Hafermann, Hartmut
Jaouen, Yves
description The nonlinear Fourier transform has the potential to overcome limits on performance and achievable data rates which arise in modern optical fiber communication systems when nonlinear interference is treated as noise. The periodic nonlinear Fourier transform (PNFT) has been much less investigated compared to its counterpart based on vanishing boundary conditions. In this article, we design a first experiment based on the PNFT in which information is encoded in the invariant nonlinear main spectrum. To this end, we propose a method to construct a set of periodic waveforms each having the same fixed period, by employing the exact inverse PNFT algorithm developed in Part I. We demonstrate feasibility of the transmission scheme in experiment in good agreement with simulations and obtain a bit-error ratio of 10^{-3} over a distance of 2000 km. It is shown that the transmission reach is significantly longer than expected from a naive estimate based on group velocity dispersion and cyclic prefix length, which is explained through a dominating solitonic component in the transmitted waveform. Our constellation design can be generalized to an arbitrary number of nonlinear degrees of freedom.
doi_str_mv 10.1109/JLT.2020.3013163
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9153107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9153107</ieee_id><sourcerecordid>2457971994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143</originalsourceid><addsrcrecordid>eNo9kU1rGzEURUVJoY7bfaEbQVaBjqunj5lRdq6dxC6mzcKlS_EsaxoFW-NIY5P8-2gYk5XE496jJw4hX4FNAJj-8Wu1nnDG2UQwEFCKD2QEStUF5yAuyIhVQhR1xeUncpnSE2MgZV2NyGmOHdJ1xJD2PiXfBvoTk9vSfLl9QdvRZTi5mBx9cNG3W2_p7zbsfHAY6V17jN7Fod60cf-dPmDMleUN_Ycn14_o3CX_P1AM2ww8ZMjehe4z-djgLrkv53NM_t7drmeLYvXnfjmbrgoruOoKWQpbKrTbCiVoVSIX3KEAazc1r0E2KG3JN_WmURuhlZKs0ZVAJRTWtQYpxuR64D7izhzy2xhfTYveLKYr088Y1zqT1Qly9mrIHmL7fHSpM0_5fyGvZ7hUla5A657IhpSNbUrRNe9YYKY3YbIJ05swZxO58m2oeOfce1yDEpC1vAEmH4MB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457971994</pqid></control><display><type>article</type><title>Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Goossens, Jan-Willem ; Hafermann, Hartmut ; Jaouen, Yves</creator><creatorcontrib>Goossens, Jan-Willem ; Hafermann, Hartmut ; Jaouen, Yves</creatorcontrib><description>The nonlinear Fourier transform has the potential to overcome limits on performance and achievable data rates which arise in modern optical fiber communication systems when nonlinear interference is treated as noise. The periodic nonlinear Fourier transform (PNFT) has been much less investigated compared to its counterpart based on vanishing boundary conditions. In this article, we design a first experiment based on the PNFT in which information is encoded in the invariant nonlinear main spectrum. To this end, we propose a method to construct a set of periodic waveforms each having the same fixed period, by employing the exact inverse PNFT algorithm developed in Part I. We demonstrate feasibility of the transmission scheme in experiment in good agreement with simulations and obtain a bit-error ratio of &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;10^{-3}&lt;/tex-math&gt;&lt;/inline-formula&gt; over a distance of 2000 km. It is shown that the transmission reach is significantly longer than expected from a naive estimate based on group velocity dispersion and cyclic prefix length, which is explained through a dominating solitonic component in the transmitted waveform. Our constellation design can be generalized to an arbitrary number of nonlinear degrees of freedom.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.3013163</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Boundary conditions ; Communications systems ; Constellations ; Data transmission ; Eigenvalues and eigenfunctions ; Encoding ; Engineering Sciences ; Experiments ; Fourier transforms ; Group velocity ; Inverse scattering ; Nonlinear optics ; Nonlinear systems ; Optical communication ; optical fiber communication ; Optical fibers ; Optical noise ; Optical solitons ; Optics ; periodic nonlinear Fourier transform ; Photonic ; Waveforms</subject><ispartof>Journal of lightwave technology, 2020-12, Vol.38 (23), p.6520-6528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143</citedby><cites>FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143</cites><orcidid>0000-0003-4877-6329 ; 0000-0002-5888-9063 ; 0000-0002-6630-2090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9153107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://telecom-paris.hal.science/hal-02991955$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goossens, Jan-Willem</creatorcontrib><creatorcontrib>Hafermann, Hartmut</creatorcontrib><creatorcontrib>Jaouen, Yves</creatorcontrib><title>Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>The nonlinear Fourier transform has the potential to overcome limits on performance and achievable data rates which arise in modern optical fiber communication systems when nonlinear interference is treated as noise. The periodic nonlinear Fourier transform (PNFT) has been much less investigated compared to its counterpart based on vanishing boundary conditions. In this article, we design a first experiment based on the PNFT in which information is encoded in the invariant nonlinear main spectrum. To this end, we propose a method to construct a set of periodic waveforms each having the same fixed period, by employing the exact inverse PNFT algorithm developed in Part I. We demonstrate feasibility of the transmission scheme in experiment in good agreement with simulations and obtain a bit-error ratio of &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;10^{-3}&lt;/tex-math&gt;&lt;/inline-formula&gt; over a distance of 2000 km. It is shown that the transmission reach is significantly longer than expected from a naive estimate based on group velocity dispersion and cyclic prefix length, which is explained through a dominating solitonic component in the transmitted waveform. Our constellation design can be generalized to an arbitrary number of nonlinear degrees of freedom.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Communications systems</subject><subject>Constellations</subject><subject>Data transmission</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Encoding</subject><subject>Engineering Sciences</subject><subject>Experiments</subject><subject>Fourier transforms</subject><subject>Group velocity</subject><subject>Inverse scattering</subject><subject>Nonlinear optics</subject><subject>Nonlinear systems</subject><subject>Optical communication</subject><subject>optical fiber communication</subject><subject>Optical fibers</subject><subject>Optical noise</subject><subject>Optical solitons</subject><subject>Optics</subject><subject>periodic nonlinear Fourier transform</subject><subject>Photonic</subject><subject>Waveforms</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kU1rGzEURUVJoY7bfaEbQVaBjqunj5lRdq6dxC6mzcKlS_EsaxoFW-NIY5P8-2gYk5XE496jJw4hX4FNAJj-8Wu1nnDG2UQwEFCKD2QEStUF5yAuyIhVQhR1xeUncpnSE2MgZV2NyGmOHdJ1xJD2PiXfBvoTk9vSfLl9QdvRZTi5mBx9cNG3W2_p7zbsfHAY6V17jN7Fod60cf-dPmDMleUN_Ycn14_o3CX_P1AM2ww8ZMjehe4z-djgLrkv53NM_t7drmeLYvXnfjmbrgoruOoKWQpbKrTbCiVoVSIX3KEAazc1r0E2KG3JN_WmURuhlZKs0ZVAJRTWtQYpxuR64D7izhzy2xhfTYveLKYr088Y1zqT1Qly9mrIHmL7fHSpM0_5fyGvZ7hUla5A657IhpSNbUrRNe9YYKY3YbIJ05swZxO58m2oeOfce1yDEpC1vAEmH4MB</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Goossens, Jan-Willem</creator><creator>Hafermann, Hartmut</creator><creator>Jaouen, Yves</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4877-6329</orcidid><orcidid>https://orcid.org/0000-0002-5888-9063</orcidid><orcidid>https://orcid.org/0000-0002-6630-2090</orcidid></search><sort><creationdate>20201201</creationdate><title>Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment</title><author>Goossens, Jan-Willem ; Hafermann, Hartmut ; Jaouen, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Communications systems</topic><topic>Constellations</topic><topic>Data transmission</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Encoding</topic><topic>Engineering Sciences</topic><topic>Experiments</topic><topic>Fourier transforms</topic><topic>Group velocity</topic><topic>Inverse scattering</topic><topic>Nonlinear optics</topic><topic>Nonlinear systems</topic><topic>Optical communication</topic><topic>optical fiber communication</topic><topic>Optical fibers</topic><topic>Optical noise</topic><topic>Optical solitons</topic><topic>Optics</topic><topic>periodic nonlinear Fourier transform</topic><topic>Photonic</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goossens, Jan-Willem</creatorcontrib><creatorcontrib>Hafermann, Hartmut</creatorcontrib><creatorcontrib>Jaouen, Yves</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goossens, Jan-Willem</au><au>Hafermann, Hartmut</au><au>Jaouen, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>38</volume><issue>23</issue><spage>6520</spage><epage>6528</epage><pages>6520-6528</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>The nonlinear Fourier transform has the potential to overcome limits on performance and achievable data rates which arise in modern optical fiber communication systems when nonlinear interference is treated as noise. The periodic nonlinear Fourier transform (PNFT) has been much less investigated compared to its counterpart based on vanishing boundary conditions. In this article, we design a first experiment based on the PNFT in which information is encoded in the invariant nonlinear main spectrum. To this end, we propose a method to construct a set of periodic waveforms each having the same fixed period, by employing the exact inverse PNFT algorithm developed in Part I. We demonstrate feasibility of the transmission scheme in experiment in good agreement with simulations and obtain a bit-error ratio of &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;10^{-3}&lt;/tex-math&gt;&lt;/inline-formula&gt; over a distance of 2000 km. It is shown that the transmission reach is significantly longer than expected from a naive estimate based on group velocity dispersion and cyclic prefix length, which is explained through a dominating solitonic component in the transmitted waveform. Our constellation design can be generalized to an arbitrary number of nonlinear degrees of freedom.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.3013163</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4877-6329</orcidid><orcidid>https://orcid.org/0000-0002-5888-9063</orcidid><orcidid>https://orcid.org/0000-0002-6630-2090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2020-12, Vol.38 (23), p.6520-6528
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_9153107
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Boundary conditions
Communications systems
Constellations
Data transmission
Eigenvalues and eigenfunctions
Encoding
Engineering Sciences
Experiments
Fourier transforms
Group velocity
Inverse scattering
Nonlinear optics
Nonlinear systems
Optical communication
optical fiber communication
Optical fibers
Optical noise
Optical solitons
Optics
periodic nonlinear Fourier transform
Photonic
Waveforms
title Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Transmission%20Based%20on%20Exact%20Inverse%20Periodic%20Nonlinear%20Fourier%20Transform,%20Part%20II:%20Waveform%20Design%20and%20Experiment&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Goossens,%20Jan-Willem&rft.date=2020-12-01&rft.volume=38&rft.issue=23&rft.spage=6520&rft.epage=6528&rft.pages=6520-6528&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.3013163&rft_dat=%3Cproquest_ieee_%3E2457971994%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457971994&rft_id=info:pmid/&rft_ieee_id=9153107&rfr_iscdi=true