Loading…
Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment
The nonlinear Fourier transform has the potential to overcome limits on performance and achievable data rates which arise in modern optical fiber communication systems when nonlinear interference is treated as noise. The periodic nonlinear Fourier transform (PNFT) has been much less investigated com...
Saved in:
Published in: | Journal of lightwave technology 2020-12, Vol.38 (23), p.6520-6528 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143 |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143 |
container_end_page | 6528 |
container_issue | 23 |
container_start_page | 6520 |
container_title | Journal of lightwave technology |
container_volume | 38 |
creator | Goossens, Jan-Willem Hafermann, Hartmut Jaouen, Yves |
description | The nonlinear Fourier transform has the potential to overcome limits on performance and achievable data rates which arise in modern optical fiber communication systems when nonlinear interference is treated as noise. The periodic nonlinear Fourier transform (PNFT) has been much less investigated compared to its counterpart based on vanishing boundary conditions. In this article, we design a first experiment based on the PNFT in which information is encoded in the invariant nonlinear main spectrum. To this end, we propose a method to construct a set of periodic waveforms each having the same fixed period, by employing the exact inverse PNFT algorithm developed in Part I. We demonstrate feasibility of the transmission scheme in experiment in good agreement with simulations and obtain a bit-error ratio of 10^{-3} over a distance of 2000 km. It is shown that the transmission reach is significantly longer than expected from a naive estimate based on group velocity dispersion and cyclic prefix length, which is explained through a dominating solitonic component in the transmitted waveform. Our constellation design can be generalized to an arbitrary number of nonlinear degrees of freedom. |
doi_str_mv | 10.1109/JLT.2020.3013163 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9153107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9153107</ieee_id><sourcerecordid>2457971994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143</originalsourceid><addsrcrecordid>eNo9kU1rGzEURUVJoY7bfaEbQVaBjqunj5lRdq6dxC6mzcKlS_EsaxoFW-NIY5P8-2gYk5XE496jJw4hX4FNAJj-8Wu1nnDG2UQwEFCKD2QEStUF5yAuyIhVQhR1xeUncpnSE2MgZV2NyGmOHdJ1xJD2PiXfBvoTk9vSfLl9QdvRZTi5mBx9cNG3W2_p7zbsfHAY6V17jN7Fod60cf-dPmDMleUN_Ycn14_o3CX_P1AM2ww8ZMjehe4z-djgLrkv53NM_t7drmeLYvXnfjmbrgoruOoKWQpbKrTbCiVoVSIX3KEAazc1r0E2KG3JN_WmURuhlZKs0ZVAJRTWtQYpxuR64D7izhzy2xhfTYveLKYr088Y1zqT1Qly9mrIHmL7fHSpM0_5fyGvZ7hUla5A657IhpSNbUrRNe9YYKY3YbIJ05swZxO58m2oeOfce1yDEpC1vAEmH4MB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457971994</pqid></control><display><type>article</type><title>Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Goossens, Jan-Willem ; Hafermann, Hartmut ; Jaouen, Yves</creator><creatorcontrib>Goossens, Jan-Willem ; Hafermann, Hartmut ; Jaouen, Yves</creatorcontrib><description>The nonlinear Fourier transform has the potential to overcome limits on performance and achievable data rates which arise in modern optical fiber communication systems when nonlinear interference is treated as noise. The periodic nonlinear Fourier transform (PNFT) has been much less investigated compared to its counterpart based on vanishing boundary conditions. In this article, we design a first experiment based on the PNFT in which information is encoded in the invariant nonlinear main spectrum. To this end, we propose a method to construct a set of periodic waveforms each having the same fixed period, by employing the exact inverse PNFT algorithm developed in Part I. We demonstrate feasibility of the transmission scheme in experiment in good agreement with simulations and obtain a bit-error ratio of <inline-formula><tex-math notation="LaTeX">10^{-3}</tex-math></inline-formula> over a distance of 2000 km. It is shown that the transmission reach is significantly longer than expected from a naive estimate based on group velocity dispersion and cyclic prefix length, which is explained through a dominating solitonic component in the transmitted waveform. Our constellation design can be generalized to an arbitrary number of nonlinear degrees of freedom.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.3013163</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Boundary conditions ; Communications systems ; Constellations ; Data transmission ; Eigenvalues and eigenfunctions ; Encoding ; Engineering Sciences ; Experiments ; Fourier transforms ; Group velocity ; Inverse scattering ; Nonlinear optics ; Nonlinear systems ; Optical communication ; optical fiber communication ; Optical fibers ; Optical noise ; Optical solitons ; Optics ; periodic nonlinear Fourier transform ; Photonic ; Waveforms</subject><ispartof>Journal of lightwave technology, 2020-12, Vol.38 (23), p.6520-6528</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143</citedby><cites>FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143</cites><orcidid>0000-0003-4877-6329 ; 0000-0002-5888-9063 ; 0000-0002-6630-2090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9153107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://telecom-paris.hal.science/hal-02991955$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goossens, Jan-Willem</creatorcontrib><creatorcontrib>Hafermann, Hartmut</creatorcontrib><creatorcontrib>Jaouen, Yves</creatorcontrib><title>Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>The nonlinear Fourier transform has the potential to overcome limits on performance and achievable data rates which arise in modern optical fiber communication systems when nonlinear interference is treated as noise. The periodic nonlinear Fourier transform (PNFT) has been much less investigated compared to its counterpart based on vanishing boundary conditions. In this article, we design a first experiment based on the PNFT in which information is encoded in the invariant nonlinear main spectrum. To this end, we propose a method to construct a set of periodic waveforms each having the same fixed period, by employing the exact inverse PNFT algorithm developed in Part I. We demonstrate feasibility of the transmission scheme in experiment in good agreement with simulations and obtain a bit-error ratio of <inline-formula><tex-math notation="LaTeX">10^{-3}</tex-math></inline-formula> over a distance of 2000 km. It is shown that the transmission reach is significantly longer than expected from a naive estimate based on group velocity dispersion and cyclic prefix length, which is explained through a dominating solitonic component in the transmitted waveform. Our constellation design can be generalized to an arbitrary number of nonlinear degrees of freedom.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Communications systems</subject><subject>Constellations</subject><subject>Data transmission</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Encoding</subject><subject>Engineering Sciences</subject><subject>Experiments</subject><subject>Fourier transforms</subject><subject>Group velocity</subject><subject>Inverse scattering</subject><subject>Nonlinear optics</subject><subject>Nonlinear systems</subject><subject>Optical communication</subject><subject>optical fiber communication</subject><subject>Optical fibers</subject><subject>Optical noise</subject><subject>Optical solitons</subject><subject>Optics</subject><subject>periodic nonlinear Fourier transform</subject><subject>Photonic</subject><subject>Waveforms</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kU1rGzEURUVJoY7bfaEbQVaBjqunj5lRdq6dxC6mzcKlS_EsaxoFW-NIY5P8-2gYk5XE496jJw4hX4FNAJj-8Wu1nnDG2UQwEFCKD2QEStUF5yAuyIhVQhR1xeUncpnSE2MgZV2NyGmOHdJ1xJD2PiXfBvoTk9vSfLl9QdvRZTi5mBx9cNG3W2_p7zbsfHAY6V17jN7Fod60cf-dPmDMleUN_Ycn14_o3CX_P1AM2ww8ZMjehe4z-djgLrkv53NM_t7drmeLYvXnfjmbrgoruOoKWQpbKrTbCiVoVSIX3KEAazc1r0E2KG3JN_WmURuhlZKs0ZVAJRTWtQYpxuR64D7izhzy2xhfTYveLKYr088Y1zqT1Qly9mrIHmL7fHSpM0_5fyGvZ7hUla5A657IhpSNbUrRNe9YYKY3YbIJ05swZxO58m2oeOfce1yDEpC1vAEmH4MB</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Goossens, Jan-Willem</creator><creator>Hafermann, Hartmut</creator><creator>Jaouen, Yves</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4877-6329</orcidid><orcidid>https://orcid.org/0000-0002-5888-9063</orcidid><orcidid>https://orcid.org/0000-0002-6630-2090</orcidid></search><sort><creationdate>20201201</creationdate><title>Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment</title><author>Goossens, Jan-Willem ; Hafermann, Hartmut ; Jaouen, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Communications systems</topic><topic>Constellations</topic><topic>Data transmission</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Encoding</topic><topic>Engineering Sciences</topic><topic>Experiments</topic><topic>Fourier transforms</topic><topic>Group velocity</topic><topic>Inverse scattering</topic><topic>Nonlinear optics</topic><topic>Nonlinear systems</topic><topic>Optical communication</topic><topic>optical fiber communication</topic><topic>Optical fibers</topic><topic>Optical noise</topic><topic>Optical solitons</topic><topic>Optics</topic><topic>periodic nonlinear Fourier transform</topic><topic>Photonic</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goossens, Jan-Willem</creatorcontrib><creatorcontrib>Hafermann, Hartmut</creatorcontrib><creatorcontrib>Jaouen, Yves</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goossens, Jan-Willem</au><au>Hafermann, Hartmut</au><au>Jaouen, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>38</volume><issue>23</issue><spage>6520</spage><epage>6528</epage><pages>6520-6528</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>The nonlinear Fourier transform has the potential to overcome limits on performance and achievable data rates which arise in modern optical fiber communication systems when nonlinear interference is treated as noise. The periodic nonlinear Fourier transform (PNFT) has been much less investigated compared to its counterpart based on vanishing boundary conditions. In this article, we design a first experiment based on the PNFT in which information is encoded in the invariant nonlinear main spectrum. To this end, we propose a method to construct a set of periodic waveforms each having the same fixed period, by employing the exact inverse PNFT algorithm developed in Part I. We demonstrate feasibility of the transmission scheme in experiment in good agreement with simulations and obtain a bit-error ratio of <inline-formula><tex-math notation="LaTeX">10^{-3}</tex-math></inline-formula> over a distance of 2000 km. It is shown that the transmission reach is significantly longer than expected from a naive estimate based on group velocity dispersion and cyclic prefix length, which is explained through a dominating solitonic component in the transmitted waveform. Our constellation design can be generalized to an arbitrary number of nonlinear degrees of freedom.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.3013163</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4877-6329</orcidid><orcidid>https://orcid.org/0000-0002-5888-9063</orcidid><orcidid>https://orcid.org/0000-0002-6630-2090</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2020-12, Vol.38 (23), p.6520-6528 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_9153107 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Boundary conditions Communications systems Constellations Data transmission Eigenvalues and eigenfunctions Encoding Engineering Sciences Experiments Fourier transforms Group velocity Inverse scattering Nonlinear optics Nonlinear systems Optical communication optical fiber communication Optical fibers Optical noise Optical solitons Optics periodic nonlinear Fourier transform Photonic Waveforms |
title | Data Transmission Based on Exact Inverse Periodic Nonlinear Fourier Transform, Part II: Waveform Design and Experiment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Transmission%20Based%20on%20Exact%20Inverse%20Periodic%20Nonlinear%20Fourier%20Transform,%20Part%20II:%20Waveform%20Design%20and%20Experiment&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Goossens,%20Jan-Willem&rft.date=2020-12-01&rft.volume=38&rft.issue=23&rft.spage=6520&rft.epage=6528&rft.pages=6520-6528&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.3013163&rft_dat=%3Cproquest_ieee_%3E2457971994%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-463c65acd7a41956a232ea31ccb82814fa4c62b8bf5b395540f973a535a889143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2457971994&rft_id=info:pmid/&rft_ieee_id=9153107&rfr_iscdi=true |