Loading…
Road Segmentation for Remote Sensing Images Using Adversarial Spatial Pyramid Networks
Road extraction in remote sensing images is of great importance for a wide range of applications. Because of the complex background, and high density, most of the existing methods fail to accurately extract a road network that appears correct and complete. Moreover, they suffer from either insuffici...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2021-06, Vol.59 (6), p.4673-4688 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Road extraction in remote sensing images is of great importance for a wide range of applications. Because of the complex background, and high density, most of the existing methods fail to accurately extract a road network that appears correct and complete. Moreover, they suffer from either insufficient training data or high costs of manual annotation. To address these problems, we introduce a new model to apply structured domain adaption for synthetic image generation and road segmentation. We incorporate a feature pyramid (FP) network into generative adversarial networks to minimize the difference between the source and target domains. A generator is learned to produce quality synthetic images, and the discriminator attempts to distinguish them. We also propose a FP network that improves the performance of the proposed model by extracting effective features from all the layers of the network for describing different scales' objects. Indeed, a novel scale-wise architecture is introduced to learn from the multilevel feature maps and improve the semantics of the features. For optimization, the model is trained by a joint reconstruction loss function, which minimizes the difference between the fake images and the real ones. A wide range of experiments on three data sets prove the superior performance of the proposed approach in terms of accuracy and efficiency. In particular, our model achieves state-of-the-art 78.86 IOU on the Massachusetts data set with 14.89M parameters and 86.78B FLOPs, with 4\times fewer FLOPs but higher accuracy (+3.47% IOU) than the top performer among state-of-the-art approaches used in the evaluation. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2020.3016086 |