Loading…

A Multiprocessing Scheme for PET Image Pre-Screening, Noise Reduction, Segmentation and Lesion Partitioning

Objective: Accurate segmentation and partitioning of lesions in PET images provide computer-aided procedures and doctors with parameters for tumour diagnosis, staging and prognosis. Currently, PET segmentation and lesion partitioning are manually measured by radiologists, which is time consuming and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2021-05, Vol.25 (5), p.1699-1711
Main Authors: Cui, Runxi, Chen, Zhigang, Wu, Jia, Tan, YanLin, Yu, GengHua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Objective: Accurate segmentation and partitioning of lesions in PET images provide computer-aided procedures and doctors with parameters for tumour diagnosis, staging and prognosis. Currently, PET segmentation and lesion partitioning are manually measured by radiologists, which is time consuming and laborious, and tedious manual procedures might lead to inaccurate measurement results. Therefore, we designed a new automatic multiprocessing scheme for PET image pre-screening, noise reduction, segmentation and lesion partitioning in this study. PET image pre-screening can reduce the time cost of noise reduction, segmentation and lesion partitioning methods, and denoising can enhance both quantitative metrics and visual quality for better segmentation accuracy. For pre-screening, we propose a new differential activation filter (DAF) to screen the lesion images from whole-body scanning. For noise reduction, neural network inverse (NN inverse) as the inverse transformation of generalized Anscombe transformation (GAT), which does not depend on the distribution of residual noise, was presented to improve the SNR of images. For segmentation and lesion partitioning, definition density peak clustering (DDPC) was proposed to realize instance segmentation of lesion and normal tissue with unsupervised images, which helped reduce the cost of density calculation and completely deleted the cluster halo. The experimental results of clinical data demonstrate that our proposed methods have good results and better performance in noise reduction, segmentation and lesion partitioning compared with state-of-the-art methods.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2020.3024563