Loading…

Spectral-Fidelity Convolutional Neural Networks for Hyperspectral Pansharpening

Hyperspectral (HS) pansharpening aims at fusing a low-resolution HS (LRHS) image with a panchromatic image to obtain a full-resolution HS image. Most of the existing HS pansharpening approaches are usually based on traditional multispectral pansharpening techniques, which are not especially tailored...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.5898-5914
Main Authors: He, Lin, Zhu, Jiawei, Li, Jun, Meng, Deyu, Chanussot, Jocelyn, Plaza, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperspectral (HS) pansharpening aims at fusing a low-resolution HS (LRHS) image with a panchromatic image to obtain a full-resolution HS image. Most of the existing HS pansharpening approaches are usually based on traditional multispectral pansharpening techniques, which are not especially tailored for two inherent challenges of the HS pansharpening, i.e., much wider spectral range gap between the two kinds of images and having to recover details in many continuous spectral bands simultaneously. In this article, we develop new spectral-fidelity convolutional neural networks (called HSpeNets) for HS pansharpening to keep the fidelity of a pansharpened image to its true spectra as much as possible. Our methods particularly focus on the decomposability of HS details, accordingly synthesizing these details progressively, and meanwhile introduce a spectral-fidelity loss. We give theoretical justifications and provide detailed experimental results, showing the superiorities of the proposed HSpeNets with regard to other state-of-the-art pansharpening approaches.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2020.3025040