Loading…
EEG-Based Emotion Recognition via Channel-Wise Attention and Self Attention
Emotion recognition based on electroencephalography (EEG) is a significant task in the brain-computer interface field. Recently, many deep learning-based emotion recognition methods are demonstrated to outperform traditional methods. However, it remains challenging to extract discriminative features...
Saved in:
Published in: | IEEE transactions on affective computing 2023-01, Vol.14 (1), p.382-393 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Emotion recognition based on electroencephalography (EEG) is a significant task in the brain-computer interface field. Recently, many deep learning-based emotion recognition methods are demonstrated to outperform traditional methods. However, it remains challenging to extract discriminative features for EEG emotion recognition, and most methods ignore useful information in channel and time. This article proposes an attention-based convolutional recurrent neural network (ACRNN) to extract more discriminative features from EEG signals and improve the accuracy of emotion recognition. First, the proposed ACRNN adopts a channel-wise attention mechanism to adaptively assign the weights of different channels, and a CNN is employed to extract the spatial information of encoded EEG signals. Then, to explore the temporal information of EEG signals, extended self-attention is integrated into an RNN to recode the importance based on intrinsic similarity in EEG signals. We conducted extensive experiments on the DEAP and DREAMER databases. The experimental results demonstrate that the proposed ACRNN outperforms state-of-the-art methods. |
---|---|
ISSN: | 1949-3045 1949-3045 |
DOI: | 10.1109/TAFFC.2020.3025777 |