Loading…
Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering
An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapp...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.177964-177975 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An Active Artificial Magnetic Conductor (AAMC) is presented to steer the radiation pattern of a printed dipole working at 2 GHz. The elements that generates the phase shift are a set of Varactor Diodes, which are characterized using its spice model in order to obtain a phase shift - capacitance mapping. Overall beam steering of +/- 40° with a step size of 10° is achieved. A circuit model that describes any multilayer substrate AAMC unit cell, which uses fist form of Foster's theorem along with transmission line theory, is proposed. Our work is suitable to be used as low profile antenna; for example, street furniture antennas, which are located on the facades of houses or buildings, so that they can be visually mixed up with signs or advertisements. Simulations have been validated using a prototype consisting of an array of 22\times 14 AAMC elements; the overall structure measures 1.9 \lambda _{0}\times 1.21 \lambda _{0} . This reflector will generate a phase gradient in its columns, which will modify the reflection angle of an incident electromagnetic wave in the H-Plane. Beam switching control has been achieved using suitably amplified LPF PWM signals generated by two Arduino modules. A printed dipole with a Fractional Bandwidth of 17% is designed and manufactured to illuminate the structure at a distance \lambda _{0}/4 above the surface. Far-field radiation patterns and reflection coefficients have been measured in an anechoic chamber using a spherical system. These compare favorably with simulations performed using the Time Domain solver in CST Microwave Studio. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3027141 |