Loading…
Deep Learning and Information Geometry for Drone Micro-Doppler Radar Classification
In this work, we build dedicated learning models for micro-Doppler radar time series classification. We develop both deep temporal architectures based on time-frequency representations, and also directly study the signal's underlying statistical Gaussian process using Information Geometry on Ri...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Brooks, Daniel Schwander, Olivier Barbaresco, Frederic Schneider, Jean -Yves Cord, Matthieu |
description | In this work, we build dedicated learning models for micro-Doppler radar time series classification. We develop both deep temporal architectures based on time-frequency representations, and also directly study the signal's underlying statistical Gaussian process using Information Geometry on Riemannian manifolds by developing and improving symmetric positive definite (SPD) neural networks. We also propose the aggregation of all proposed models in a single, highly performing classification pipeline. |
doi_str_mv | 10.1109/RadarConf2043947.2020.9266689 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9266689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9266689</ieee_id><sourcerecordid>9266689</sourcerecordid><originalsourceid>FETCH-LOGICAL-h237t-c21c42ba6bd25ba0eea49d5b1f6b6ebe3a20c9b337d579b9141584140f36efd43</originalsourceid><addsrcrecordid>eNotkMtKxDAYhaMgOI7zBG6ycdmae5ultDoOVAQv6yFp_mikTUrazby9wzirAx-cCwehe0pKSol-eDfO5CZFz4jgWlQlI4yUmimlan2BNrqqacVqWmvByCVaMV7JQnJaX6Obef4lRPIjWqGPFmDCHZgcQ_zGJjq8iz7l0SwhRbyFNMKSD_iIcJtTBPwa-pyKNk3TABmfduBmMPMcfOhPrlt05c0ww-asa_T1_PTZvBTd23bXPHbFz7F6KXpGe8GsUdYxaQ0BMEI7aalXVoEFbhjpteW8crLSVlNBZS2oIJ4r8E7wNbr7zw0AsJ9yGE0-7M8f8D_Mf1SC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Learning and Information Geometry for Drone Micro-Doppler Radar Classification</title><source>IEEE Xplore All Conference Series</source><creator>Brooks, Daniel ; Schwander, Olivier ; Barbaresco, Frederic ; Schneider, Jean -Yves ; Cord, Matthieu</creator><creatorcontrib>Brooks, Daniel ; Schwander, Olivier ; Barbaresco, Frederic ; Schneider, Jean -Yves ; Cord, Matthieu</creatorcontrib><description>In this work, we build dedicated learning models for micro-Doppler radar time series classification. We develop both deep temporal architectures based on time-frequency representations, and also directly study the signal's underlying statistical Gaussian process using Information Geometry on Riemannian manifolds by developing and improving symmetric positive definite (SPD) neural networks. We also propose the aggregation of all proposed models in a single, highly performing classification pipeline.</description><identifier>EISSN: 2375-5318</identifier><identifier>EISBN: 9781728189420</identifier><identifier>EISBN: 172818942X</identifier><identifier>DOI: 10.1109/RadarConf2043947.2020.9266689</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Convolution ; Manifolds ; Neural networks ; Pipelines ; Radar ; Time series analysis</subject><ispartof>2020 IEEE Radar Conference (RadarConf20), 2020, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9266689$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9266689$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Brooks, Daniel</creatorcontrib><creatorcontrib>Schwander, Olivier</creatorcontrib><creatorcontrib>Barbaresco, Frederic</creatorcontrib><creatorcontrib>Schneider, Jean -Yves</creatorcontrib><creatorcontrib>Cord, Matthieu</creatorcontrib><title>Deep Learning and Information Geometry for Drone Micro-Doppler Radar Classification</title><title>2020 IEEE Radar Conference (RadarConf20)</title><addtitle>RadarConf20</addtitle><description>In this work, we build dedicated learning models for micro-Doppler radar time series classification. We develop both deep temporal architectures based on time-frequency representations, and also directly study the signal's underlying statistical Gaussian process using Information Geometry on Riemannian manifolds by developing and improving symmetric positive definite (SPD) neural networks. We also propose the aggregation of all proposed models in a single, highly performing classification pipeline.</description><subject>Computer architecture</subject><subject>Convolution</subject><subject>Manifolds</subject><subject>Neural networks</subject><subject>Pipelines</subject><subject>Radar</subject><subject>Time series analysis</subject><issn>2375-5318</issn><isbn>9781728189420</isbn><isbn>172818942X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKxDAYhaMgOI7zBG6ycdmae5ultDoOVAQv6yFp_mikTUrazby9wzirAx-cCwehe0pKSol-eDfO5CZFz4jgWlQlI4yUmimlan2BNrqqacVqWmvByCVaMV7JQnJaX6Obef4lRPIjWqGPFmDCHZgcQ_zGJjq8iz7l0SwhRbyFNMKSD_iIcJtTBPwa-pyKNk3TABmfduBmMPMcfOhPrlt05c0ww-asa_T1_PTZvBTd23bXPHbFz7F6KXpGe8GsUdYxaQ0BMEI7aalXVoEFbhjpteW8crLSVlNBZS2oIJ4r8E7wNbr7zw0AsJ9yGE0-7M8f8D_Mf1SC</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Brooks, Daniel</creator><creator>Schwander, Olivier</creator><creator>Barbaresco, Frederic</creator><creator>Schneider, Jean -Yves</creator><creator>Cord, Matthieu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20200921</creationdate><title>Deep Learning and Information Geometry for Drone Micro-Doppler Radar Classification</title><author>Brooks, Daniel ; Schwander, Olivier ; Barbaresco, Frederic ; Schneider, Jean -Yves ; Cord, Matthieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h237t-c21c42ba6bd25ba0eea49d5b1f6b6ebe3a20c9b337d579b9141584140f36efd43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer architecture</topic><topic>Convolution</topic><topic>Manifolds</topic><topic>Neural networks</topic><topic>Pipelines</topic><topic>Radar</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Brooks, Daniel</creatorcontrib><creatorcontrib>Schwander, Olivier</creatorcontrib><creatorcontrib>Barbaresco, Frederic</creatorcontrib><creatorcontrib>Schneider, Jean -Yves</creatorcontrib><creatorcontrib>Cord, Matthieu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brooks, Daniel</au><au>Schwander, Olivier</au><au>Barbaresco, Frederic</au><au>Schneider, Jean -Yves</au><au>Cord, Matthieu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Learning and Information Geometry for Drone Micro-Doppler Radar Classification</atitle><btitle>2020 IEEE Radar Conference (RadarConf20)</btitle><stitle>RadarConf20</stitle><date>2020-09-21</date><risdate>2020</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2375-5318</eissn><eisbn>9781728189420</eisbn><eisbn>172818942X</eisbn><abstract>In this work, we build dedicated learning models for micro-Doppler radar time series classification. We develop both deep temporal architectures based on time-frequency representations, and also directly study the signal's underlying statistical Gaussian process using Information Geometry on Riemannian manifolds by developing and improving symmetric positive definite (SPD) neural networks. We also propose the aggregation of all proposed models in a single, highly performing classification pipeline.</abstract><pub>IEEE</pub><doi>10.1109/RadarConf2043947.2020.9266689</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-5318 |
ispartof | 2020 IEEE Radar Conference (RadarConf20), 2020, p.1-6 |
issn | 2375-5318 |
language | eng |
recordid | cdi_ieee_primary_9266689 |
source | IEEE Xplore All Conference Series |
subjects | Computer architecture Convolution Manifolds Neural networks Pipelines Radar Time series analysis |
title | Deep Learning and Information Geometry for Drone Micro-Doppler Radar Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Learning%20and%20Information%20Geometry%20for%20Drone%20Micro-Doppler%20Radar%20Classification&rft.btitle=2020%20IEEE%20Radar%20Conference%20(RadarConf20)&rft.au=Brooks,%20Daniel&rft.date=2020-09-21&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2375-5318&rft_id=info:doi/10.1109/RadarConf2043947.2020.9266689&rft.eisbn=9781728189420&rft.eisbn_list=172818942X&rft_dat=%3Cieee_CHZPO%3E9266689%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h237t-c21c42ba6bd25ba0eea49d5b1f6b6ebe3a20c9b337d579b9141584140f36efd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9266689&rfr_iscdi=true |