Loading…
Analytic Deep Learning-Based Surrogate Model for Operational Planning With Dynamic TTC Constraints
The increased penetration of wind power introduces more operational changes of critical corridors and the traditional time-consuming transient stability constrained total transfer capability (TTC) operational planning is unable to meet the real-time monitoring need. This paper develops a more comput...
Saved in:
Published in: | IEEE transactions on power systems 2021-07, Vol.36 (4), p.3507-3519 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The increased penetration of wind power introduces more operational changes of critical corridors and the traditional time-consuming transient stability constrained total transfer capability (TTC) operational planning is unable to meet the real-time monitoring need. This paper develops a more computationally efficient approach to address that challenge via the analytical deep learning-based surrogate model. The key idea is to resort to deep learning for developing a computationally cheap surrogate model to replace the original time-consuming differential-algebraic constraints related to TTC. However, the deep learning-based surrogate model introduces implicit rules that are difficult to handle in the optimization process. To this end, we derive the Jacobian and Hessian matrices of the implicit surrogate models and finally transfer them into an analytical formulation that can be easily solved by the interior point method. Surrogate modeling and problem reformulation allow us to achieve significantly improved computational efficiency and the yielded solutions can be used for operational planning. Numerical results carried out on the modified IEEE 39-bus and 68-bus systems demonstrate the effectiveness of the proposed method in dealing with complicated TTC constraints while balancing the computational efficiency and accuracy. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2020.3041866 |